Normalized defining polynomial
\( x^{22} - 80 x^{20} + 2125 x^{18} - 21360 x^{16} + 24165 x^{14} + 745935 x^{12} - 3014745 x^{10} + 3905820 x^{8} - 1835760 x^{6} + 250235 x^{4} - 8065 x^{2} + 20 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-78230860018782846246416289550781250000000000=-\,2^{10}\cdot 3^{20}\cdot 5^{21}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{22} a^{16} + \frac{3}{22} a^{14} - \frac{1}{2} a^{13} - \frac{3}{22} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} + \frac{3}{22} a^{8} - \frac{1}{2} a^{7} + \frac{4}{11} a^{6} - \frac{1}{2} a^{5} - \frac{7}{22} a^{4} - \frac{1}{2} a^{3} - \frac{9}{22} a^{2} - \frac{1}{2} a - \frac{4}{11}$, $\frac{1}{22} a^{17} + \frac{3}{22} a^{15} - \frac{1}{2} a^{14} - \frac{3}{22} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} + \frac{3}{22} a^{9} - \frac{1}{2} a^{8} + \frac{4}{11} a^{7} - \frac{1}{2} a^{6} - \frac{7}{22} a^{5} - \frac{1}{2} a^{4} - \frac{9}{22} a^{3} - \frac{1}{2} a^{2} - \frac{4}{11} a$, $\frac{1}{22} a^{18} - \frac{1}{2} a^{15} + \frac{5}{11} a^{14} - \frac{1}{11} a^{12} - \frac{1}{2} a^{11} - \frac{4}{11} a^{10} - \frac{1}{2} a^{9} - \frac{1}{22} a^{8} - \frac{9}{22} a^{6} - \frac{5}{11} a^{4} - \frac{3}{22} a^{2} - \frac{1}{2} a + \frac{1}{11}$, $\frac{1}{22} a^{19} + \frac{5}{11} a^{15} - \frac{1}{2} a^{14} + \frac{9}{22} a^{13} + \frac{3}{22} a^{11} - \frac{1}{22} a^{9} - \frac{1}{2} a^{8} + \frac{1}{11} a^{7} + \frac{1}{22} a^{5} - \frac{1}{2} a^{4} + \frac{4}{11} a^{3} - \frac{9}{22} a$, $\frac{1}{16026277306487007430723861976858} a^{20} - \frac{142840204785985302182827651824}{8013138653243503715361930988429} a^{18} - \frac{12734605247303793706183328977}{728467150294863974123811908039} a^{16} - \frac{1}{2} a^{15} + \frac{1607392530976841143071375447501}{16026277306487007430723861976858} a^{14} - \frac{2007427184519939909943027768471}{16026277306487007430723861976858} a^{12} + \frac{1990938076066868642557609243991}{16026277306487007430723861976858} a^{10} - \frac{1}{2} a^{9} + \frac{3783937303099438046926904967089}{8013138653243503715361930988429} a^{8} + \frac{2643170447049112561417098859241}{16026277306487007430723861976858} a^{6} - \frac{1}{2} a^{5} - \frac{189728076887854403682797920301}{728467150294863974123811908039} a^{4} + \frac{2835192214652275457347605636923}{16026277306487007430723861976858} a^{2} + \frac{1195924343546461839282620103891}{8013138653243503715361930988429}$, $\frac{1}{32052554612974014861447723953716} a^{21} - \frac{71420102392992651091413825912}{8013138653243503715361930988429} a^{19} + \frac{40755075895834592053434424595}{2913868601179455896495247632156} a^{17} + \frac{1896396990930716532721405585809}{16026277306487007430723861976858} a^{15} - \frac{12205967288648035547676394481017}{32052554612974014861447723953716} a^{13} - \frac{1}{2} a^{12} - \frac{14035339230420138788166252732867}{32052554612974014861447723953716} a^{11} - \frac{1}{2} a^{10} - \frac{6273001249403539414498616318563}{32052554612974014861447723953716} a^{9} - \frac{7784254155161243395839099420867}{16026277306487007430723861976858} a^{7} - \frac{1}{2} a^{6} + \frac{335593823093946964686308076418}{728467150294863974123811908039} a^{5} - \frac{1}{2} a^{4} + \frac{4292126515242003405595229453001}{32052554612974014861447723953716} a^{3} - \frac{1}{2} a^{2} - \frac{11449027168509491829787186044959}{32052554612974014861447723953716} a - \frac{1}{2}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2929254128540000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.10.10.10 | $x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |