Normalized defining polynomial
\( x^{22} - 68 x^{20} + 1749 x^{18} - 21878 x^{16} + 146579 x^{14} - 538577 x^{12} + 1028049 x^{10} + \cdots + 729 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[20, 1]$ |
| |
| Discriminant: |
\(-4129233136056857981979443884256982828952059904\)
\(\medspace = -\,2^{22}\cdot 74843^{8}\)
|
| |
| Root discriminant: | \(118.43\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(74843\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3}a^{13}+\frac{1}{3}a^{11}+\frac{1}{3}a^{9}+\frac{1}{3}a^{7}-\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{3}a^{14}+\frac{1}{3}a^{12}+\frac{1}{3}a^{10}+\frac{1}{3}a^{8}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{15}+\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a$, $\frac{1}{3}a^{16}+\frac{1}{3}a^{8}-\frac{1}{3}a^{6}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{17}+\frac{1}{3}a^{9}-\frac{1}{3}a^{7}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{18}+\frac{1}{3}a^{10}-\frac{1}{3}a^{8}-\frac{1}{3}a^{4}$, $\frac{1}{3}a^{19}+\frac{1}{3}a^{11}-\frac{1}{3}a^{9}-\frac{1}{3}a^{5}$, $\frac{1}{12\cdots 89}a^{20}-\frac{16\cdots 85}{12\cdots 89}a^{18}+\frac{22\cdots 05}{41\cdots 63}a^{16}+\frac{29\cdots 65}{12\cdots 89}a^{14}+\frac{14\cdots 25}{12\cdots 89}a^{12}+\frac{52\cdots 51}{12\cdots 89}a^{10}+\frac{21\cdots 13}{13\cdots 21}a^{8}-\frac{14\cdots 81}{12\cdots 89}a^{6}-\frac{15\cdots 41}{41\cdots 63}a^{4}+\frac{49\cdots 91}{12\cdots 89}a^{2}-\frac{44\cdots 69}{13\cdots 21}$, $\frac{1}{11\cdots 01}a^{21}-\frac{85\cdots 11}{11\cdots 01}a^{19}+\frac{30\cdots 47}{37\cdots 67}a^{17}+\frac{44\cdots 28}{11\cdots 01}a^{15}+\frac{18\cdots 77}{11\cdots 01}a^{13}-\frac{28\cdots 90}{11\cdots 01}a^{11}+\frac{11\cdots 07}{37\cdots 67}a^{9}-\frac{39\cdots 48}{11\cdots 01}a^{7}+\frac{26\cdots 22}{37\cdots 67}a^{5}-\frac{36\cdots 39}{11\cdots 01}a^{3}+\frac{55\cdots 15}{12\cdots 89}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $20$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{49\cdots 02}{41\cdots 63}a^{20}-\frac{10\cdots 63}{13\cdots 21}a^{18}+\frac{78\cdots 17}{41\cdots 63}a^{16}-\frac{30\cdots 79}{13\cdots 21}a^{14}+\frac{52\cdots 48}{41\cdots 63}a^{12}-\frac{16\cdots 95}{41\cdots 63}a^{10}+\frac{24\cdots 09}{41\cdots 63}a^{8}-\frac{40\cdots 27}{13\cdots 21}a^{6}-\frac{16\cdots 89}{13\cdots 21}a^{4}+\frac{44\cdots 15}{41\cdots 63}a^{2}-\frac{54\cdots 85}{13\cdots 21}$, $\frac{31\cdots 83}{12\cdots 89}a^{20}-\frac{21\cdots 07}{12\cdots 89}a^{18}+\frac{18\cdots 96}{41\cdots 63}a^{16}-\frac{67\cdots 28}{12\cdots 89}a^{14}+\frac{45\cdots 80}{12\cdots 89}a^{12}-\frac{16\cdots 66}{12\cdots 89}a^{10}+\frac{34\cdots 21}{13\cdots 21}a^{8}-\frac{22\cdots 70}{12\cdots 89}a^{6}-\frac{14\cdots 82}{41\cdots 63}a^{4}+\frac{84\cdots 29}{12\cdots 89}a^{2}-\frac{62\cdots 93}{13\cdots 21}$, $\frac{28\cdots 86}{41\cdots 63}a^{20}-\frac{19\cdots 86}{41\cdots 63}a^{18}+\frac{17\cdots 62}{13\cdots 21}a^{16}-\frac{66\cdots 31}{41\cdots 63}a^{14}+\frac{46\cdots 56}{41\cdots 63}a^{12}-\frac{17\cdots 44}{41\cdots 63}a^{10}+\frac{12\cdots 32}{13\cdots 21}a^{8}-\frac{29\cdots 54}{41\cdots 63}a^{6}-\frac{14\cdots 19}{13\cdots 21}a^{4}+\frac{11\cdots 44}{41\cdots 63}a^{2}-\frac{39\cdots 33}{13\cdots 21}$, $\frac{77\cdots 88}{41\cdots 63}a^{20}-\frac{52\cdots 75}{41\cdots 63}a^{18}+\frac{13\cdots 03}{41\cdots 63}a^{16}-\frac{15\cdots 68}{41\cdots 63}a^{14}+\frac{33\cdots 68}{13\cdots 21}a^{12}-\frac{11\cdots 13}{13\cdots 21}a^{10}+\frac{60\cdots 05}{41\cdots 63}a^{8}-\frac{41\cdots 35}{41\cdots 63}a^{6}-\frac{30\cdots 08}{13\cdots 21}a^{4}+\frac{15\cdots 59}{41\cdots 63}a^{2}-\frac{44\cdots 18}{13\cdots 21}$, $\frac{12\cdots 39}{11\cdots 01}a^{21}-\frac{84\cdots 02}{11\cdots 01}a^{19}+\frac{72\cdots 11}{37\cdots 67}a^{17}-\frac{27\cdots 22}{11\cdots 01}a^{15}+\frac{18\cdots 70}{11\cdots 01}a^{13}-\frac{65\cdots 55}{11\cdots 01}a^{11}+\frac{41\cdots 49}{37\cdots 67}a^{9}-\frac{91\cdots 04}{11\cdots 01}a^{7}-\frac{55\cdots 26}{37\cdots 67}a^{5}+\frac{35\cdots 62}{11\cdots 01}a^{3}-\frac{27\cdots 48}{12\cdots 89}a$, $\frac{10\cdots 93}{11\cdots 01}a^{21}-\frac{69\cdots 59}{11\cdots 01}a^{19}+\frac{59\cdots 89}{37\cdots 67}a^{17}-\frac{22\cdots 60}{11\cdots 01}a^{15}+\frac{14\cdots 56}{11\cdots 01}a^{13}-\frac{54\cdots 93}{11\cdots 01}a^{11}+\frac{34\cdots 79}{37\cdots 67}a^{9}-\frac{73\cdots 95}{11\cdots 01}a^{7}-\frac{74\cdots 88}{37\cdots 67}a^{5}+\frac{32\cdots 59}{11\cdots 01}a^{3}+\frac{24\cdots 66}{12\cdots 89}a$, $\frac{26\cdots 14}{41\cdots 63}a^{20}-\frac{60\cdots 36}{13\cdots 21}a^{18}+\frac{15\cdots 71}{13\cdots 21}a^{16}-\frac{58\cdots 68}{41\cdots 63}a^{14}+\frac{12\cdots 03}{13\cdots 21}a^{12}-\frac{14\cdots 78}{41\cdots 63}a^{10}+\frac{25\cdots 10}{41\cdots 63}a^{8}-\frac{60\cdots 19}{13\cdots 21}a^{6}-\frac{43\cdots 82}{41\cdots 63}a^{4}+\frac{73\cdots 20}{41\cdots 63}a^{2}-\frac{86\cdots 89}{13\cdots 21}$, $\frac{17\cdots 41}{11\cdots 01}a^{21}-\frac{11\cdots 79}{11\cdots 01}a^{19}+\frac{10\cdots 55}{37\cdots 67}a^{17}-\frac{38\cdots 36}{11\cdots 01}a^{15}+\frac{25\cdots 09}{11\cdots 01}a^{13}-\frac{93\cdots 81}{11\cdots 01}a^{11}+\frac{58\cdots 72}{37\cdots 67}a^{9}-\frac{13\cdots 62}{11\cdots 01}a^{7}-\frac{72\cdots 54}{37\cdots 67}a^{5}+\frac{51\cdots 65}{11\cdots 01}a^{3}-\frac{49\cdots 73}{12\cdots 89}a$, $\frac{11\cdots 32}{12\cdots 89}a^{20}-\frac{73\cdots 13}{12\cdots 89}a^{18}+\frac{19\cdots 78}{13\cdots 21}a^{16}-\frac{18\cdots 44}{12\cdots 89}a^{14}+\frac{10\cdots 74}{12\cdots 89}a^{12}-\frac{29\cdots 36}{12\cdots 89}a^{10}+\frac{11\cdots 18}{41\cdots 63}a^{8}+\frac{24\cdots 21}{12\cdots 89}a^{6}-\frac{27\cdots 34}{41\cdots 63}a^{4}-\frac{28\cdots 30}{12\cdots 89}a^{2}+\frac{33\cdots 48}{13\cdots 21}$, $\frac{17\cdots 08}{12\cdots 89}a^{20}-\frac{11\cdots 78}{12\cdots 89}a^{18}+\frac{10\cdots 97}{41\cdots 63}a^{16}-\frac{37\cdots 45}{12\cdots 89}a^{14}+\frac{24\cdots 55}{12\cdots 89}a^{12}-\frac{81\cdots 92}{12\cdots 89}a^{10}+\frac{39\cdots 10}{41\cdots 63}a^{8}+\frac{12\cdots 05}{12\cdots 89}a^{6}-\frac{64\cdots 79}{41\cdots 63}a^{4}+\frac{11\cdots 45}{12\cdots 89}a^{2}-\frac{65\cdots 49}{13\cdots 21}$, $\frac{25\cdots 95}{37\cdots 67}a^{21}+\frac{36\cdots 81}{12\cdots 89}a^{20}-\frac{17\cdots 97}{37\cdots 67}a^{19}-\frac{24\cdots 51}{12\cdots 89}a^{18}+\frac{14\cdots 72}{12\cdots 89}a^{17}+\frac{20\cdots 10}{41\cdots 63}a^{16}-\frac{55\cdots 38}{37\cdots 67}a^{15}-\frac{77\cdots 48}{12\cdots 89}a^{14}+\frac{37\cdots 88}{37\cdots 67}a^{13}+\frac{50\cdots 51}{12\cdots 89}a^{12}-\frac{13\cdots 94}{37\cdots 67}a^{11}-\frac{18\cdots 84}{12\cdots 89}a^{10}+\frac{87\cdots 28}{12\cdots 89}a^{9}+\frac{37\cdots 08}{13\cdots 21}a^{8}-\frac{20\cdots 27}{37\cdots 67}a^{7}-\frac{24\cdots 37}{12\cdots 89}a^{6}-\frac{92\cdots 95}{12\cdots 89}a^{5}-\frac{14\cdots 04}{41\cdots 63}a^{4}+\frac{76\cdots 50}{37\cdots 67}a^{3}+\frac{96\cdots 74}{12\cdots 89}a^{2}-\frac{88\cdots 48}{41\cdots 63}a-\frac{91\cdots 85}{13\cdots 21}$, $\frac{51\cdots 59}{37\cdots 67}a^{21}+\frac{10\cdots 27}{12\cdots 89}a^{20}-\frac{34\cdots 64}{37\cdots 67}a^{19}-\frac{71\cdots 36}{12\cdots 89}a^{18}+\frac{29\cdots 22}{12\cdots 89}a^{17}+\frac{61\cdots 02}{41\cdots 63}a^{16}-\frac{11\cdots 12}{37\cdots 67}a^{15}-\frac{23\cdots 09}{12\cdots 89}a^{14}+\frac{76\cdots 76}{37\cdots 67}a^{13}+\frac{15\cdots 91}{12\cdots 89}a^{12}-\frac{28\cdots 04}{37\cdots 67}a^{11}-\frac{57\cdots 52}{12\cdots 89}a^{10}+\frac{18\cdots 36}{12\cdots 89}a^{9}+\frac{36\cdots 69}{41\cdots 63}a^{8}-\frac{44\cdots 37}{37\cdots 67}a^{7}-\frac{84\cdots 45}{12\cdots 89}a^{6}-\frac{13\cdots 95}{12\cdots 89}a^{5}-\frac{14\cdots 67}{13\cdots 21}a^{4}+\frac{17\cdots 25}{37\cdots 67}a^{3}+\frac{33\cdots 20}{12\cdots 89}a^{2}-\frac{87\cdots 21}{13\cdots 21}a-\frac{22\cdots 91}{13\cdots 21}$, $\frac{46\cdots 26}{11\cdots 01}a^{21}-\frac{97\cdots 97}{13\cdots 21}a^{20}-\frac{31\cdots 70}{11\cdots 01}a^{19}+\frac{19\cdots 60}{41\cdots 63}a^{18}+\frac{26\cdots 35}{37\cdots 67}a^{17}-\frac{51\cdots 08}{41\cdots 63}a^{16}-\frac{10\cdots 58}{11\cdots 01}a^{15}+\frac{64\cdots 41}{41\cdots 63}a^{14}+\frac{67\cdots 61}{11\cdots 01}a^{13}-\frac{42\cdots 91}{41\cdots 63}a^{12}-\frac{24\cdots 16}{11\cdots 01}a^{11}+\frac{52\cdots 26}{13\cdots 21}a^{10}+\frac{15\cdots 26}{37\cdots 67}a^{9}-\frac{29\cdots 59}{41\cdots 63}a^{8}-\frac{34\cdots 53}{11\cdots 01}a^{7}+\frac{76\cdots 63}{13\cdots 21}a^{6}-\frac{20\cdots 57}{37\cdots 67}a^{5}+\frac{29\cdots 34}{41\cdots 63}a^{4}+\frac{13\cdots 17}{11\cdots 01}a^{3}-\frac{82\cdots 41}{41\cdots 63}a^{2}-\frac{11\cdots 24}{12\cdots 89}a+\frac{20\cdots 45}{13\cdots 21}$, $\frac{27\cdots 26}{11\cdots 01}a^{21}+\frac{11\cdots 45}{12\cdots 89}a^{20}-\frac{18\cdots 63}{11\cdots 01}a^{19}-\frac{78\cdots 47}{12\cdots 89}a^{18}+\frac{16\cdots 64}{37\cdots 67}a^{17}+\frac{63\cdots 00}{41\cdots 63}a^{16}-\frac{62\cdots 53}{11\cdots 01}a^{15}-\frac{21\cdots 21}{12\cdots 89}a^{14}+\frac{43\cdots 14}{11\cdots 01}a^{13}+\frac{12\cdots 91}{12\cdots 89}a^{12}-\frac{16\cdots 58}{11\cdots 01}a^{11}-\frac{34\cdots 85}{12\cdots 89}a^{10}+\frac{11\cdots 26}{37\cdots 67}a^{9}+\frac{11\cdots 69}{41\cdots 63}a^{8}-\frac{29\cdots 36}{11\cdots 01}a^{7}+\frac{98\cdots 07}{12\cdots 89}a^{6}-\frac{11\cdots 15}{37\cdots 67}a^{5}-\frac{12\cdots 75}{13\cdots 21}a^{4}+\frac{11\cdots 10}{11\cdots 01}a^{3}-\frac{76\cdots 38}{12\cdots 89}a^{2}-\frac{81\cdots 95}{12\cdots 89}a-\frac{81\cdots 39}{13\cdots 21}$, $\frac{87\cdots 83}{11\cdots 01}a^{21}-\frac{30\cdots 68}{13\cdots 21}a^{20}-\frac{59\cdots 01}{11\cdots 01}a^{19}+\frac{61\cdots 01}{41\cdots 63}a^{18}+\frac{50\cdots 91}{37\cdots 67}a^{17}-\frac{15\cdots 98}{41\cdots 63}a^{16}-\frac{19\cdots 62}{11\cdots 01}a^{15}+\frac{66\cdots 58}{13\cdots 21}a^{14}+\frac{12\cdots 54}{11\cdots 01}a^{13}-\frac{44\cdots 52}{13\cdots 21}a^{12}-\frac{46\cdots 06}{11\cdots 01}a^{11}+\frac{49\cdots 80}{41\cdots 63}a^{10}+\frac{28\cdots 37}{37\cdots 67}a^{9}-\frac{30\cdots 50}{13\cdots 21}a^{8}-\frac{62\cdots 02}{11\cdots 01}a^{7}+\frac{68\cdots 53}{41\cdots 63}a^{6}-\frac{48\cdots 83}{37\cdots 67}a^{5}+\frac{15\cdots 86}{41\cdots 63}a^{4}+\frac{25\cdots 06}{11\cdots 01}a^{3}-\frac{27\cdots 54}{41\cdots 63}a^{2}-\frac{86\cdots 62}{12\cdots 89}a+\frac{27\cdots 72}{13\cdots 21}$, $\frac{12\cdots 85}{11\cdots 01}a^{21}+\frac{11\cdots 59}{12\cdots 89}a^{20}-\frac{81\cdots 12}{11\cdots 01}a^{19}-\frac{78\cdots 40}{12\cdots 89}a^{18}+\frac{70\cdots 88}{37\cdots 67}a^{17}+\frac{22\cdots 39}{13\cdots 21}a^{16}-\frac{26\cdots 11}{11\cdots 01}a^{15}-\frac{24\cdots 58}{12\cdots 89}a^{14}+\frac{17\cdots 39}{11\cdots 01}a^{13}+\frac{16\cdots 15}{12\cdots 89}a^{12}-\frac{64\cdots 82}{11\cdots 01}a^{11}-\frac{57\cdots 40}{12\cdots 89}a^{10}+\frac{40\cdots 47}{37\cdots 67}a^{9}+\frac{35\cdots 91}{41\cdots 63}a^{8}-\frac{89\cdots 87}{11\cdots 01}a^{7}-\frac{76\cdots 90}{12\cdots 89}a^{6}-\frac{58\cdots 25}{37\cdots 67}a^{5}-\frac{63\cdots 74}{41\cdots 63}a^{4}+\frac{34\cdots 23}{11\cdots 01}a^{3}+\frac{32\cdots 28}{12\cdots 89}a^{2}-\frac{23\cdots 86}{12\cdots 89}a+\frac{28\cdots 41}{13\cdots 21}$, $\frac{11\cdots 65}{11\cdots 01}a^{21}-\frac{46\cdots 93}{12\cdots 89}a^{20}-\frac{81\cdots 21}{11\cdots 01}a^{19}+\frac{31\cdots 27}{12\cdots 89}a^{18}+\frac{69\cdots 47}{37\cdots 67}a^{17}-\frac{89\cdots 17}{13\cdots 21}a^{16}-\frac{26\cdots 52}{11\cdots 01}a^{15}+\frac{10\cdots 66}{12\cdots 89}a^{14}+\frac{17\cdots 52}{11\cdots 01}a^{13}-\frac{67\cdots 83}{12\cdots 89}a^{12}-\frac{62\cdots 34}{11\cdots 01}a^{11}+\frac{24\cdots 82}{12\cdots 89}a^{10}+\frac{39\cdots 29}{37\cdots 67}a^{9}-\frac{15\cdots 80}{41\cdots 63}a^{8}-\frac{85\cdots 33}{11\cdots 01}a^{7}+\frac{38\cdots 47}{12\cdots 89}a^{6}-\frac{62\cdots 08}{37\cdots 67}a^{5}-\frac{28\cdots 05}{41\cdots 63}a^{4}+\frac{35\cdots 36}{11\cdots 01}a^{3}-\frac{76\cdots 46}{12\cdots 89}a^{2}-\frac{38\cdots 46}{12\cdots 89}a+\frac{78\cdots 63}{13\cdots 21}$, $\frac{11\cdots 51}{11\cdots 01}a^{21}-\frac{42\cdots 98}{13\cdots 21}a^{20}-\frac{80\cdots 81}{11\cdots 01}a^{19}+\frac{85\cdots 15}{41\cdots 63}a^{18}+\frac{69\cdots 35}{37\cdots 67}a^{17}-\frac{22\cdots 68}{41\cdots 63}a^{16}-\frac{25\cdots 80}{11\cdots 01}a^{15}+\frac{27\cdots 17}{41\cdots 63}a^{14}+\frac{17\cdots 62}{11\cdots 01}a^{13}-\frac{18\cdots 37}{41\cdots 63}a^{12}-\frac{62\cdots 07}{11\cdots 01}a^{11}+\frac{22\cdots 48}{13\cdots 21}a^{10}+\frac{38\cdots 72}{37\cdots 67}a^{9}-\frac{41\cdots 72}{13\cdots 21}a^{8}-\frac{84\cdots 28}{11\cdots 01}a^{7}+\frac{88\cdots 10}{41\cdots 63}a^{6}-\frac{65\cdots 29}{37\cdots 67}a^{5}+\frac{21\cdots 00}{41\cdots 63}a^{4}+\frac{33\cdots 45}{11\cdots 01}a^{3}-\frac{12\cdots 49}{13\cdots 21}a^{2}-\frac{11\cdots 93}{12\cdots 89}a+\frac{31\cdots 38}{13\cdots 21}$, $\frac{21\cdots 37}{11\cdots 01}a^{21}-\frac{74\cdots 21}{12\cdots 89}a^{20}-\frac{14\cdots 13}{11\cdots 01}a^{19}+\frac{49\cdots 22}{12\cdots 89}a^{18}+\frac{12\cdots 17}{37\cdots 67}a^{17}-\frac{42\cdots 95}{41\cdots 63}a^{16}-\frac{46\cdots 86}{11\cdots 01}a^{15}+\frac{15\cdots 32}{12\cdots 89}a^{14}+\frac{30\cdots 08}{11\cdots 01}a^{13}-\frac{99\cdots 86}{12\cdots 89}a^{12}-\frac{11\cdots 59}{11\cdots 01}a^{11}+\frac{35\cdots 74}{12\cdots 89}a^{10}+\frac{70\cdots 86}{37\cdots 67}a^{9}-\frac{70\cdots 95}{13\cdots 21}a^{8}-\frac{15\cdots 44}{11\cdots 01}a^{7}+\frac{46\cdots 50}{12\cdots 89}a^{6}-\frac{10\cdots 25}{37\cdots 67}a^{5}+\frac{31\cdots 68}{41\cdots 63}a^{4}+\frac{63\cdots 04}{11\cdots 01}a^{3}-\frac{19\cdots 45}{12\cdots 89}a^{2}-\frac{23\cdots 90}{12\cdots 89}a+\frac{59\cdots 56}{13\cdots 21}$, $\frac{73\cdots 77}{11\cdots 01}a^{21}+\frac{31\cdots 47}{12\cdots 89}a^{20}-\frac{49\cdots 42}{11\cdots 01}a^{19}-\frac{20\cdots 22}{12\cdots 89}a^{18}+\frac{42\cdots 84}{37\cdots 67}a^{17}+\frac{57\cdots 36}{13\cdots 21}a^{16}-\frac{16\cdots 49}{11\cdots 01}a^{15}-\frac{62\cdots 02}{12\cdots 89}a^{14}+\frac{10\cdots 84}{11\cdots 01}a^{13}+\frac{39\cdots 13}{12\cdots 89}a^{12}-\frac{38\cdots 64}{11\cdots 01}a^{11}-\frac{13\cdots 33}{12\cdots 89}a^{10}+\frac{24\cdots 03}{37\cdots 67}a^{9}+\frac{24\cdots 35}{13\cdots 21}a^{8}-\frac{52\cdots 55}{11\cdots 01}a^{7}-\frac{14\cdots 12}{12\cdots 89}a^{6}-\frac{37\cdots 39}{37\cdots 67}a^{5}-\frac{31\cdots 99}{13\cdots 21}a^{4}+\frac{21\cdots 23}{11\cdots 01}a^{3}+\frac{58\cdots 45}{12\cdots 89}a^{2}-\frac{21\cdots 88}{12\cdots 89}a-\frac{54\cdots 92}{13\cdots 21}$
|
| |
| Regulator: | \( 7215216869150000 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{20}\cdot(2\pi)^{1}\cdot 7215216869150000 \cdot 1}{2\cdot\sqrt{4129233136056857981979443884256982828952059904}}\cr\approx \mathstrut & 0.369883086860875 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{11}.\PSL(2,11)$ (as 22T42):
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for $C_2^{11}.\PSL(2,11)$ |
| Character table for $C_2^{11}.\PSL(2,11)$ |
Intermediate fields
| 11.11.31376518243389673201.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{3}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | $22$ | ${\href{/padicField/13.5.0.1}{5} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.11.0.1}{11} }^{2}$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }$ | $22$ | ${\href{/padicField/29.5.0.1}{5} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | $22$ | ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.11.0.1}{11} }^{2}$ | ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.5.0.1}{5} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.11.0.1}{11} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.11.2.22a72.1 | $x^{22} + 2 x^{20} + 2 x^{18} + 2 x^{17} + 2 x^{15} + 2 x^{13} + 4 x^{11} + 4 x^{9} + 2 x^{8} + 2 x^{7} + 4 x^{6} + 3 x^{4} + 2 x^{2} + 3$ | $2$ | $11$ | $22$ | not computed | not computed |
|
\(74843\)
| $\Q_{74843}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{74843}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $8$ | $2$ | $4$ | $4$ |