Properties

Label 22.20.2451930392...5088.1
Degree $22$
Signature $[20, 1]$
Discriminant $-\,2^{4}\cdot 3^{4}\cdot 19^{2}\cdot 31\cdot 65380800771598157\cdot 258573494153022619$
Root discriminant $76.09$
Ramified primes $2, 3, 19, 31, 65380800771598157, 258573494153022619$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 22T59

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -4, 28, 95, -294, -744, 1577, 2536, -4388, -4429, 6683, 4344, -5908, -2526, 3162, 888, -1038, -185, 204, 21, -22, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - x^21 - 22*x^20 + 21*x^19 + 204*x^18 - 185*x^17 - 1038*x^16 + 888*x^15 + 3162*x^14 - 2526*x^13 - 5908*x^12 + 4344*x^11 + 6683*x^10 - 4429*x^9 - 4388*x^8 + 2536*x^7 + 1577*x^6 - 744*x^5 - 294*x^4 + 95*x^3 + 28*x^2 - 4*x - 1)
 
gp: K = bnfinit(x^22 - x^21 - 22*x^20 + 21*x^19 + 204*x^18 - 185*x^17 - 1038*x^16 + 888*x^15 + 3162*x^14 - 2526*x^13 - 5908*x^12 + 4344*x^11 + 6683*x^10 - 4429*x^9 - 4388*x^8 + 2536*x^7 + 1577*x^6 - 744*x^5 - 294*x^4 + 95*x^3 + 28*x^2 - 4*x - 1, 1)
 

Normalized defining polynomial

\( x^{22} - x^{21} - 22 x^{20} + 21 x^{19} + 204 x^{18} - 185 x^{17} - 1038 x^{16} + 888 x^{15} + 3162 x^{14} - 2526 x^{13} - 5908 x^{12} + 4344 x^{11} + 6683 x^{10} - 4429 x^{9} - 4388 x^{8} + 2536 x^{7} + 1577 x^{6} - 744 x^{5} - 294 x^{4} + 95 x^{3} + 28 x^{2} - 4 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 1]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-245193039241591144351217789804876939315088=-\,2^{4}\cdot 3^{4}\cdot 19^{2}\cdot 31\cdot 65380800771598157\cdot 258573494153022619\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $76.09$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 19, 31, 65380800771598157, 258573494153022619$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{3} a^{21} + \frac{1}{3} a^{20} + \frac{1}{3} a^{19} - \frac{1}{3} a^{18} + \frac{1}{3} a^{17} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $20$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 75826530958700 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

22T59:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 1124000727777607680000
The 1002 conjugacy class representatives for t22n59 are not computed
Character table for t22n59 is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 44 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ $17{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ $22$ $22$ $19{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ R $20{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ R ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ $22$ ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.3.4.4$x^{3} + 3 x^{2} + 3$$3$$1$$4$$S_3$$[2]^{2}$
3.9.0.1$x^{9} - x^{3} + x^{2} + 1$$1$$9$$0$$C_9$$[\ ]^{9}$
3.10.0.1$x^{10} - x^{3} - x + 2$$1$$10$$0$$C_{10}$$[\ ]^{10}$
19Data not computed
$31$$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
31.2.1.2$x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.4.0.1$x^{4} - 2 x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
31.12.0.1$x^{12} + 2 x^{2} - 3 x + 22$$1$$12$$0$$C_{12}$$[\ ]^{12}$
65380800771598157Data not computed
258573494153022619Data not computed