Normalized defining polynomial
\( x^{22} - 400 x^{20} + 67179 x^{18} - 6153936 x^{16} + 332234520 x^{14} - 10449620808 x^{12} + 161768261952 x^{10} + 150453098976 x^{8} - 47964749150331 x^{6} + 697620189720184 x^{4} - 3355033131829681 x^{2} + 638422240164720 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2360782888136677539846811675588590672634700789304705468856315278608937941898270750476788224860384348791111680=-\,2^{70}\cdot 3^{21}\cdot 5\cdot 11\cdot 29\cdot 43\cdot 337^{8}\cdot 310501^{8}\cdot 193926709\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84{,}342.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 29, 43, 337, 310501, 193926709$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{17} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{2950442336895763005424408194123522436283571976756718491645}{57887320607168480035725746532474501690526662399435613406516} a^{18} - \frac{2603440021866950946320866384427251126804103995042417604338}{14471830151792120008931436633118625422631665599858903351629} a^{16} - \frac{3356847592750441243324607258186595391020285802604853780517}{14471830151792120008931436633118625422631665599858903351629} a^{14} + \frac{4163615942939049138070709307651308553005686994909891076697}{14471830151792120008931436633118625422631665599858903351629} a^{12} - \frac{3320541285504482433560338830940529710410172444674416705262}{14471830151792120008931436633118625422631665599858903351629} a^{10} + \frac{6252926343353724827564831908809365656199123199966382483329}{14471830151792120008931436633118625422631665599858903351629} a^{8} + \frac{4830212119368684812064988315978933499899662118653069122910}{14471830151792120008931436633118625422631665599858903351629} a^{6} + \frac{12221361899331131538812917411456345585141244491789918076509}{57887320607168480035725746532474501690526662399435613406516} a^{4} - \frac{18176715180622911668603038220634977692713965299259310434193}{57887320607168480035725746532474501690526662399435613406516} a^{2} + \frac{425080577449944343247954747025853065021723310081986501105}{1315620922890192728084676057556238674784696872714445759239}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{21} - \frac{2950442336895763005424408194123522436283571976756718491645}{57887320607168480035725746532474501690526662399435613406516} a^{19} - \frac{2603440021866950946320866384427251126804103995042417604338}{14471830151792120008931436633118625422631665599858903351629} a^{17} - \frac{3356847592750441243324607258186595391020285802604853780517}{14471830151792120008931436633118625422631665599858903351629} a^{15} + \frac{4163615942939049138070709307651308553005686994909891076697}{14471830151792120008931436633118625422631665599858903351629} a^{13} - \frac{3320541285504482433560338830940529710410172444674416705262}{14471830151792120008931436633118625422631665599858903351629} a^{11} + \frac{6252926343353724827564831908809365656199123199966382483329}{14471830151792120008931436633118625422631665599858903351629} a^{9} + \frac{4830212119368684812064988315978933499899662118653069122910}{14471830151792120008931436633118625422631665599858903351629} a^{7} + \frac{12221361899331131538812917411456345585141244491789918076509}{57887320607168480035725746532474501690526662399435613406516} a^{5} - \frac{18176715180622911668603038220634977692713965299259310434193}{57887320607168480035725746532474501690526662399435613406516} a^{3} + \frac{425080577449944343247954747025853065021723310081986501105}{1315620922890192728084676057556238674784696872714445759239} a$
Class group and class number
Not computed
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.11.118769262421915560193703211428553337469927424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $22$ | R | $22$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | R | $16{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.8.0.1 | $x^{8} + x^{2} - 2 x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 43 | Data not computed | ||||||
| 337 | Data not computed | ||||||
| 310501 | Data not computed | ||||||
| 193926709 | Data not computed | ||||||