Normalized defining polynomial
\( x^{22} - 55 x^{20} + 1199 x^{18} - 13299 x^{16} + 81114 x^{14} - 279642 x^{12} + 532422 x^{10} - 491194 x^{8} + 80201 x^{6} + 190157 x^{4} - 119053 x^{2} + 18225 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1580153645858805893796455628954412194463744=-\,2^{36}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{11} a^{8} + \frac{3}{11} a^{6} + \frac{2}{11} a^{4} + \frac{1}{11} a^{2} + \frac{5}{11}$, $\frac{1}{11} a^{9} + \frac{3}{11} a^{7} + \frac{2}{11} a^{5} + \frac{1}{11} a^{3} + \frac{5}{11} a$, $\frac{1}{11} a^{10} + \frac{4}{11} a^{6} - \frac{5}{11} a^{4} + \frac{2}{11} a^{2} - \frac{4}{11}$, $\frac{1}{22} a^{11} - \frac{1}{22} a^{10} - \frac{1}{22} a^{9} - \frac{1}{22} a^{8} - \frac{5}{11} a^{7} + \frac{2}{11} a^{6} + \frac{2}{11} a^{5} - \frac{4}{11} a^{4} + \frac{1}{22} a^{3} - \frac{3}{22} a^{2} - \frac{9}{22} a - \frac{1}{22}$, $\frac{1}{22} a^{12} - \frac{1}{22} a^{8} + \frac{1}{11} a^{6} + \frac{3}{22} a^{4} + \frac{1}{11} a^{2} - \frac{3}{22}$, $\frac{1}{22} a^{13} - \frac{1}{22} a^{9} + \frac{1}{11} a^{7} + \frac{3}{22} a^{5} + \frac{1}{11} a^{3} - \frac{3}{22} a$, $\frac{1}{22} a^{14} - \frac{1}{22} a^{10} - \frac{3}{22} a^{6} - \frac{1}{11} a^{4} - \frac{5}{22} a^{2} - \frac{5}{11}$, $\frac{1}{22} a^{15} - \frac{1}{22} a^{10} - \frac{1}{22} a^{9} - \frac{1}{22} a^{8} + \frac{9}{22} a^{7} + \frac{2}{11} a^{6} + \frac{1}{11} a^{5} - \frac{4}{11} a^{4} - \frac{2}{11} a^{3} - \frac{3}{22} a^{2} + \frac{3}{22} a - \frac{1}{22}$, $\frac{1}{242} a^{16} - \frac{5}{242} a^{14} + \frac{1}{121} a^{12} + \frac{3}{242} a^{10} - \frac{1}{121} a^{8} - \frac{21}{242} a^{6} + \frac{27}{121} a^{4} + \frac{87}{242} a^{2} + \frac{91}{242}$, $\frac{1}{242} a^{17} - \frac{5}{242} a^{15} + \frac{1}{121} a^{13} + \frac{3}{242} a^{11} - \frac{1}{121} a^{9} - \frac{21}{242} a^{7} + \frac{27}{121} a^{5} + \frac{87}{242} a^{3} + \frac{91}{242} a$, $\frac{1}{242} a^{18} - \frac{1}{242} a^{14} + \frac{1}{121} a^{12} - \frac{9}{242} a^{10} + \frac{1}{121} a^{8} - \frac{73}{242} a^{6} + \frac{41}{121} a^{4} - \frac{34}{121} a^{2} - \frac{53}{121}$, $\frac{1}{242} a^{19} - \frac{1}{242} a^{15} + \frac{1}{121} a^{13} + \frac{1}{121} a^{11} - \frac{1}{22} a^{10} - \frac{9}{242} a^{9} - \frac{1}{22} a^{8} + \frac{59}{242} a^{7} + \frac{2}{11} a^{6} - \frac{58}{121} a^{5} - \frac{4}{11} a^{4} - \frac{57}{242} a^{3} - \frac{3}{22} a^{2} + \frac{37}{242} a - \frac{1}{22}$, $\frac{1}{5108398327516} a^{20} + \frac{4086990131}{2554199163758} a^{18} + \frac{6167743089}{5108398327516} a^{16} - \frac{41300152261}{2554199163758} a^{14} + \frac{8127041165}{2554199163758} a^{12} - \frac{15721243864}{1277099581879} a^{10} - \frac{1}{22} a^{9} - \frac{113176767653}{2554199163758} a^{8} + \frac{4}{11} a^{7} - \frac{743420872933}{2554199163758} a^{6} - \frac{1}{11} a^{5} - \frac{1958117383759}{5108398327516} a^{4} + \frac{5}{11} a^{3} + \frac{985605559167}{2554199163758} a^{2} - \frac{5}{22} a - \frac{1210021761347}{5108398327516}$, $\frac{1}{689633774214660} a^{21} - \frac{51308556782}{34481688710733} a^{19} - \frac{732650196841}{689633774214660} a^{17} - \frac{57896978372}{57469481184555} a^{15} - \frac{81322738798}{57469481184555} a^{13} + \frac{2603527405843}{114938962369110} a^{11} - \frac{1}{22} a^{10} + \frac{809343952942}{19156493728185} a^{9} + \frac{23370731790284}{172408443553665} a^{7} - \frac{2}{11} a^{6} + \frac{4801814144641}{62693979474060} a^{5} - \frac{3}{11} a^{4} - \frac{32092329065699}{344816887107330} a^{3} + \frac{9}{22} a^{2} + \frac{7101628718467}{62693979474060} a + \frac{2}{11}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 398887974077000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||