Normalized defining polynomial
\( x^{22} - 61 x^{20} + 1150 x^{18} - 7485 x^{16} - 13755 x^{14} + 419313 x^{12} - 2209803 x^{10} + 5513775 x^{8} - 7283940 x^{6} + 4978855 x^{4} - 1483189 x^{2} + 85264 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15646172003756569249283257910156250000000000=-\,2^{10}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{5} a^{10} - \frac{1}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a$, $\frac{1}{15} a^{12} + \frac{1}{3} a^{6} - \frac{2}{5} a^{2} - \frac{1}{3}$, $\frac{1}{15} a^{13} + \frac{1}{3} a^{7} - \frac{2}{5} a^{3} - \frac{1}{3} a$, $\frac{1}{15} a^{14} - \frac{1}{15} a^{8} - \frac{2}{5} a^{6} + \frac{1}{5} a^{4} + \frac{4}{15} a^{2} - \frac{2}{5}$, $\frac{1}{15} a^{15} - \frac{1}{15} a^{9} - \frac{2}{5} a^{7} + \frac{1}{5} a^{5} + \frac{4}{15} a^{3} - \frac{2}{5} a$, $\frac{1}{150} a^{16} - \frac{1}{30} a^{15} - \frac{1}{50} a^{14} - \frac{1}{30} a^{13} + \frac{1}{50} a^{12} + \frac{7}{75} a^{10} - \frac{1}{15} a^{9} + \frac{13}{30} a^{7} + \frac{4}{25} a^{6} + \frac{3}{10} a^{5} - \frac{47}{150} a^{4} + \frac{7}{15} a^{3} + \frac{12}{25} a^{2} - \frac{7}{30} a + \frac{6}{25}$, $\frac{1}{150} a^{17} + \frac{1}{75} a^{15} - \frac{1}{75} a^{13} - \frac{1}{30} a^{12} + \frac{7}{75} a^{11} + \frac{1}{15} a^{9} - \frac{1}{10} a^{8} + \frac{59}{150} a^{7} + \frac{7}{30} a^{6} + \frac{29}{75} a^{5} - \frac{1}{10} a^{4} + \frac{31}{75} a^{3} + \frac{1}{10} a^{2} - \frac{29}{150} a + \frac{1}{15}$, $\frac{1}{150} a^{18} + \frac{2}{75} a^{14} - \frac{1}{30} a^{13} - \frac{1}{75} a^{12} + \frac{2}{25} a^{10} - \frac{1}{10} a^{9} - \frac{1}{150} a^{8} + \frac{7}{30} a^{7} + \frac{1}{3} a^{6} - \frac{1}{10} a^{5} - \frac{9}{25} a^{4} + \frac{1}{10} a^{3} - \frac{23}{150} a^{2} + \frac{1}{15} a + \frac{19}{75}$, $\frac{1}{150} a^{19} + \frac{2}{75} a^{15} - \frac{1}{30} a^{14} - \frac{1}{75} a^{13} + \frac{2}{25} a^{11} - \frac{1}{10} a^{10} - \frac{1}{150} a^{9} + \frac{1}{30} a^{8} + \frac{1}{3} a^{7} - \frac{3}{10} a^{6} - \frac{9}{25} a^{5} - \frac{1}{10} a^{4} - \frac{23}{150} a^{3} - \frac{2}{15} a^{2} + \frac{19}{75} a - \frac{1}{5}$, $\frac{1}{35153989008467483413050} a^{20} - \frac{11069958574554867044}{3515398900846748341305} a^{18} - \frac{5467663255062720653}{3195817182587953037550} a^{16} + \frac{1113864010316364519559}{35153989008467483413050} a^{14} - \frac{1}{30} a^{13} - \frac{63257509530956569833}{11717996336155827804350} a^{12} - \frac{1}{10} a^{11} + \frac{467972820234931388131}{35153989008467483413050} a^{10} - \frac{1}{10} a^{9} - \frac{53994143360662287488}{703079780169349668261} a^{8} - \frac{4}{15} a^{7} + \frac{1481395719443403543803}{5858998168077913902175} a^{6} + \frac{2}{5} a^{5} + \frac{359474349734894767583}{1597908591293976518775} a^{4} - \frac{2}{5} a^{3} - \frac{8436358277958578860133}{17576994504233741706525} a^{2} + \frac{1}{6} a - \frac{2769310362299712687736}{17576994504233741706525}$, $\frac{1}{10264964790472505156610600} a^{21} + \frac{1291139722849144261013}{3421654930157501718870200} a^{19} - \frac{354273721712206194457}{466589308657841143482300} a^{17} - \frac{94504986092715190363937}{10264964790472505156610600} a^{15} + \frac{5799474680827099276991}{684330986031500343774040} a^{13} - \frac{73870398309768598823431}{2052992958094501031322120} a^{11} - \frac{1}{10} a^{10} - \frac{831630767987696373254119}{10264964790472505156610600} a^{9} + \frac{851580086103291856678633}{3421654930157501718870200} a^{7} - \frac{1}{2} a^{6} - \frac{447141168360422333039}{3195817182587953037550} a^{5} - \frac{1}{2} a^{4} - \frac{219782499647309259434789}{2052992958094501031322120} a^{3} - \frac{1}{2} a^{2} - \frac{1108571900870330558486667}{3421654930157501718870200} a + \frac{1}{10}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 647594212316000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |