Normalized defining polynomial
\( x^{22} - x^{21} + 14 x^{20} - 11 x^{19} + 83 x^{18} - 46 x^{17} + 290 x^{16} - 162 x^{15} + 710 x^{14} - 312 x^{13} + 966 x^{12} - 47 x^{11} + 930 x^{10} + 311 x^{9} + 628 x^{8} + 309 x^{7} + 259 x^{6} + 141 x^{5} + 87 x^{4} + 44 x^{3} + 16 x^{2} + 2 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(823824605709428474533642578125=5^{11}\cdot 167^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{221} a^{20} + \frac{1}{221} a^{19} + \frac{20}{221} a^{18} + \frac{33}{221} a^{17} + \frac{8}{221} a^{16} + \frac{6}{13} a^{15} + \frac{84}{221} a^{14} - \frac{28}{221} a^{13} + \frac{106}{221} a^{12} + \frac{9}{221} a^{11} + \frac{82}{221} a^{10} - \frac{4}{13} a^{9} + \frac{1}{13} a^{8} + \frac{73}{221} a^{7} - \frac{42}{221} a^{6} + \frac{75}{221} a^{5} + \frac{20}{221} a^{4} + \frac{3}{17} a^{3} + \frac{24}{221} a^{2} + \frac{27}{221} a - \frac{55}{221}$, $\frac{1}{363751046168327874232423} a^{21} - \frac{553875068378813795126}{363751046168327874232423} a^{20} + \frac{3708084132289217260126}{27980849705255990325571} a^{19} - \frac{149390517050364495621277}{363751046168327874232423} a^{18} - \frac{159215562426782283490239}{363751046168327874232423} a^{17} - \frac{2752306539813749488017}{363751046168327874232423} a^{16} + \frac{45503668889275985437277}{363751046168327874232423} a^{15} + \frac{150649040811131124820345}{363751046168327874232423} a^{14} + \frac{87896429328997191258242}{363751046168327874232423} a^{13} - \frac{80832724581025805910683}{363751046168327874232423} a^{12} - \frac{86730541138695854273231}{363751046168327874232423} a^{11} + \frac{102853577677487334098149}{363751046168327874232423} a^{10} + \frac{5445835402258963003854}{21397120362842816131319} a^{9} - \frac{94097871916555726004195}{363751046168327874232423} a^{8} - \frac{96713141085311424540575}{363751046168327874232423} a^{7} + \frac{6808802376769499193475}{21397120362842816131319} a^{6} + \frac{10142578341374300083368}{363751046168327874232423} a^{5} + \frac{172402632506084771901945}{363751046168327874232423} a^{4} - \frac{79491457502162615717992}{363751046168327874232423} a^{3} - \frac{85376667923377247641066}{363751046168327874232423} a^{2} - \frac{5581659833818637196941}{15815262876883820618801} a - \frac{55303068791643883276604}{363751046168327874232423}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1079623.65534 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 44 |
| The 14 conjugacy class representatives for $D_{22}$ |
| Character table for $D_{22}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 11.1.129891985607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 22 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | R | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $167$ | 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |