Normalized defining polynomial
\( x^{22} - x^{21} + 14 x^{19} - 11 x^{18} - 42 x^{17} + 99 x^{16} + 27 x^{15} - 297 x^{14} + 205 x^{13} + 473 x^{12} - 780 x^{11} - 121 x^{10} + 1273 x^{9} - 891 x^{8} - 915 x^{7} + 1485 x^{6} - 27 x^{5} - 1166 x^{4} + 1016 x^{3} - 429 x^{2} + 98 x - 8 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(639745687664639805566853620073=3^{21}\cdot 11^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{41123519104772983538978115802} a^{21} - \frac{15095270186859282682956046029}{41123519104772983538978115802} a^{20} - \frac{254516396540282589795355310}{20561759552386491769489057901} a^{19} - \frac{5505213952698693958564830767}{20561759552386491769489057901} a^{18} - \frac{9634372344752377025218457493}{41123519104772983538978115802} a^{17} + \frac{4451557926769372913025604561}{20561759552386491769489057901} a^{16} - \frac{11302927999547228950932312487}{41123519104772983538978115802} a^{15} - \frac{17833311120406287385644221573}{41123519104772983538978115802} a^{14} + \frac{15616542471080159316722229485}{41123519104772983538978115802} a^{13} - \frac{17749829187916097747204042879}{41123519104772983538978115802} a^{12} + \frac{6421209351823217310672425395}{41123519104772983538978115802} a^{11} + \frac{6859531605379419086560661882}{20561759552386491769489057901} a^{10} + \frac{8247905435865559879366814131}{41123519104772983538978115802} a^{9} - \frac{1101428697990366197498550233}{41123519104772983538978115802} a^{8} + \frac{537635490066710496999387495}{41123519104772983538978115802} a^{7} - \frac{11072676989530835607936095839}{41123519104772983538978115802} a^{6} + \frac{6285306585654715625455125595}{41123519104772983538978115802} a^{5} - \frac{19319712491047423425877191635}{41123519104772983538978115802} a^{4} + \frac{8310760584463466725038277306}{20561759552386491769489057901} a^{3} + \frac{5950519614004267877954969117}{20561759552386491769489057901} a^{2} - \frac{19365438812901176130425661729}{41123519104772983538978115802} a - \frac{5394087174870999487236789891}{20561759552386491769489057901}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5215069.85605 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_{11}$ (as 22T6):
| A solvable group of order 220 |
| The 22 conjugacy class representatives for $C_2\times F_{11}$ |
| Character table for $C_2\times F_{11}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{33}) \), 11.1.139234453205859.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||