Normalized defining polynomial
\( x^{22} + 55 x^{20} + 1177 x^{18} + 12639 x^{16} + 73898 x^{14} + 237402 x^{12} + 390258 x^{10} + 246906 x^{8} - 33011 x^{6} - 40249 x^{4} - 451 x^{2} - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6320614583435223575185822515817648777854976=2^{38}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{44} a^{12} - \frac{3}{22} a^{10} - \frac{7}{44} a^{8} + \frac{1}{22} a^{6} - \frac{7}{44} a^{4} + \frac{4}{11} a^{2} + \frac{1}{44}$, $\frac{1}{44} a^{13} + \frac{5}{44} a^{11} - \frac{1}{4} a^{10} + \frac{1}{11} a^{9} - \frac{1}{4} a^{8} + \frac{1}{22} a^{7} - \frac{7}{44} a^{5} + \frac{5}{44} a^{3} + \frac{1}{4} a^{2} - \frac{5}{22} a + \frac{1}{4}$, $\frac{1}{44} a^{14} + \frac{1}{44} a^{10} + \frac{1}{11} a^{8} + \frac{5}{44} a^{6} + \frac{9}{22} a^{4} + \frac{9}{44} a^{2} + \frac{3}{22}$, $\frac{1}{44} a^{15} + \frac{1}{44} a^{11} + \frac{1}{11} a^{9} + \frac{5}{44} a^{7} + \frac{9}{22} a^{5} + \frac{9}{44} a^{3} + \frac{3}{22} a$, $\frac{1}{44} a^{16} + \frac{5}{22} a^{10} - \frac{5}{22} a^{8} - \frac{3}{22} a^{6} - \frac{3}{22} a^{4} + \frac{3}{11} a^{2} - \frac{1}{44}$, $\frac{1}{88} a^{17} - \frac{1}{88} a^{16} + \frac{5}{44} a^{11} - \frac{5}{44} a^{10} + \frac{3}{22} a^{9} - \frac{3}{22} a^{8} + \frac{2}{11} a^{7} - \frac{2}{11} a^{6} + \frac{2}{11} a^{5} - \frac{2}{11} a^{4} - \frac{5}{44} a^{3} + \frac{5}{44} a^{2} + \frac{43}{88} a - \frac{43}{88}$, $\frac{1}{88} a^{18} - \frac{1}{88} a^{16} + \frac{9}{44} a^{10} - \frac{7}{44} a^{8} - \frac{5}{22} a^{6} - \frac{1}{2} a^{4} + \frac{25}{88} a^{2} + \frac{35}{88}$, $\frac{1}{88} a^{19} - \frac{1}{88} a^{16} + \frac{3}{44} a^{11} + \frac{3}{22} a^{10} + \frac{5}{22} a^{9} + \frac{5}{44} a^{8} - \frac{1}{22} a^{7} - \frac{2}{11} a^{6} - \frac{7}{22} a^{5} - \frac{2}{11} a^{4} + \frac{37}{88} a^{3} - \frac{3}{22} a^{2} - \frac{4}{11} a + \frac{23}{88}$, $\frac{1}{1013706190581128} a^{20} + \frac{3013257342723}{1013706190581128} a^{18} + \frac{5489254673333}{506853095290564} a^{16} - \frac{3006629573045}{506853095290564} a^{14} + \frac{5209250624075}{506853095290564} a^{12} - \frac{28372247731547}{253426547645282} a^{10} - \frac{57162816319371}{253426547645282} a^{8} - \frac{16695858270279}{506853095290564} a^{6} - \frac{302880706394047}{1013706190581128} a^{4} - \frac{429433860712951}{1013706190581128} a^{2} - \frac{239307430839203}{506853095290564}$, $\frac{1}{1013706190581128} a^{21} + \frac{3013257342723}{1013706190581128} a^{19} - \frac{540879182665}{1013706190581128} a^{17} - \frac{1}{88} a^{16} - \frac{3006629573045}{506853095290564} a^{15} + \frac{5209250624075}{506853095290564} a^{13} + \frac{3092958928223}{126713273822641} a^{11} + \frac{3}{22} a^{10} - \frac{56728689992087}{506853095290564} a^{9} + \frac{5}{44} a^{8} - \frac{108850966504927}{506853095290564} a^{7} - \frac{2}{11} a^{6} - \frac{487190922863343}{1013706190581128} a^{5} - \frac{2}{11} a^{4} + \frac{446039667516205}{1013706190581128} a^{3} - \frac{3}{22} a^{2} - \frac{213668925503793}{1013706190581128} a + \frac{23}{88}$
Class group and class number
$C_{20}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1583985040230 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |