Normalized defining polynomial
\( x^{22} + 513 x^{20} + 114074 x^{18} + 14371632 x^{16} + 1122151662 x^{14} + 55486050798 x^{12} + 1677095605968 x^{10} + 26575785014988 x^{8} + 62534541123822 x^{6} - 4178116504369170 x^{4} - 43296735359689596 x^{2} - 3484724793731976 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51543810007530364950738948681743384761753476096510835701363261292919242474159040085359431452872546884912152576=2^{71}\cdot 3^{21}\cdot 211\cdot 337^{8}\cdot 310501^{8}\cdot 688136807609\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97{,}032.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 211, 337, 310501, 688136807609$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{16}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{16}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{16}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{2950442336895763005424408194123522436283571976756718490815}{57887320607168480035725746532474501690526662399435613406516} a^{18} - \frac{7338001338100263739869009156974600085515755719442536959277}{28943660303584240017862873266237250845263331199717806703258} a^{16} - \frac{1863615119156654953980891776735522826638415204466559602944}{14471830151792120008931436633118625422631665599858903351629} a^{14} - \frac{1908865156040300215448588203615814517741870469194348054533}{28943660303584240017862873266237250845263331199717806703258} a^{12} + \frac{3308177665902484683773089588291819397024986636930560983303}{28943660303584240017862873266237250845263331199717806703258} a^{10} + \frac{746871812759802204132904074590997634538575333012148356024}{14471830151792120008931436633118625422631665599858903351629} a^{8} + \frac{6336870944220189766767509591463712821537141174725307648108}{14471830151792120008931436633118625422631665599858903351629} a^{6} - \frac{5902460395162287353805537079561292123575271969014728166243}{28943660303584240017862873266237250845263331199717806703258} a^{4} - \frac{4890199810199589231503791444038684133412319727949014822851}{28943660303584240017862873266237250845263331199717806703258} a^{2} + \frac{46449333229587174913088432383693176032339874284274981505}{14471830151792120008931436633118625422631665599858903351629}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{21} - \frac{2950442336895763005424408194123522436283571976756718490815}{57887320607168480035725746532474501690526662399435613406516} a^{19} + \frac{3566914406845928134531213738072012668557954940208183196176}{14471830151792120008931436633118625422631665599858903351629} a^{17} - \frac{1}{2} a^{16} - \frac{1863615119156654953980891776735522826638415204466559602944}{14471830151792120008931436633118625422631665599858903351629} a^{15} - \frac{1908865156040300215448588203615814517741870469194348054533}{28943660303584240017862873266237250845263331199717806703258} a^{13} + \frac{3308177665902484683773089588291819397024986636930560983303}{28943660303584240017862873266237250845263331199717806703258} a^{11} + \frac{746871812759802204132904074590997634538575333012148356024}{14471830151792120008931436633118625422631665599858903351629} a^{9} + \frac{6336870944220189766767509591463712821537141174725307648108}{14471830151792120008931436633118625422631665599858903351629} a^{7} - \frac{5902460395162287353805537079561292123575271969014728166243}{28943660303584240017862873266237250845263331199717806703258} a^{5} - \frac{4890199810199589231503791444038684133412319727949014822851}{28943660303584240017862873266237250845263331199717806703258} a^{3} + \frac{46449333229587174913088432383693176032339874284274981505}{14471830151792120008931436633118625422631665599858903351629} a$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.11.118769262421915560193703211428553337469927424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 211 | Data not computed | ||||||
| 337 | Data not computed | ||||||
| 310501 | Data not computed | ||||||
| 688136807609 | Data not computed | ||||||