Normalized defining polynomial
\( x^{22} - 8 x^{21} + 23 x^{20} - 8 x^{19} - 123 x^{18} + 364 x^{17} - 662 x^{16} + 1316 x^{15} - 2070 x^{14} + 1360 x^{13} - 62 x^{12} + 2204 x^{11} - 5167 x^{10} + 2080 x^{9} + 795 x^{8} + 8072 x^{7} - 22483 x^{6} + 26464 x^{5} - 17824 x^{4} + 7236 x^{3} - 1720 x^{2} + 224 x - 8 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(499858877615201668877221298700288=2^{22}\cdot 3^{11}\cdot 11^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{6} a^{5} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{12} - \frac{1}{12} a^{10} - \frac{1}{12} a^{8} + \frac{1}{3} a^{7} - \frac{1}{12} a^{6} - \frac{1}{3} a^{5} + \frac{1}{4} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{12} a^{9} - \frac{1}{6} a^{8} - \frac{1}{12} a^{7} - \frac{1}{3} a^{6} + \frac{1}{4} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{36} a^{16} - \frac{1}{36} a^{15} + \frac{1}{36} a^{14} + \frac{1}{36} a^{13} - \frac{1}{36} a^{12} - \frac{1}{12} a^{11} + \frac{1}{36} a^{10} - \frac{1}{12} a^{9} + \frac{1}{12} a^{8} - \frac{11}{36} a^{7} + \frac{5}{12} a^{6} + \frac{1}{4} a^{5} + \frac{1}{3} a^{4} - \frac{7}{18} a^{3} - \frac{5}{18} a^{2} - \frac{2}{9}$, $\frac{1}{36} a^{17} - \frac{1}{36} a^{14} - \frac{1}{36} a^{12} - \frac{1}{18} a^{11} + \frac{1}{36} a^{10} - \frac{5}{36} a^{8} - \frac{2}{9} a^{7} - \frac{1}{4} a^{6} - \frac{1}{12} a^{5} - \frac{11}{36} a^{4} + \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{4}{9}$, $\frac{1}{36} a^{18} - \frac{1}{36} a^{15} - \frac{1}{36} a^{13} - \frac{1}{18} a^{12} + \frac{1}{36} a^{11} - \frac{5}{36} a^{9} - \frac{2}{9} a^{8} - \frac{1}{4} a^{7} - \frac{1}{12} a^{6} - \frac{11}{36} a^{5} + \frac{2}{9} a^{3} - \frac{2}{9} a^{2} + \frac{4}{9} a$, $\frac{1}{72} a^{19} - \frac{1}{72} a^{17} - \frac{1}{72} a^{16} - \frac{1}{24} a^{15} - \frac{1}{24} a^{14} + \frac{1}{72} a^{13} + \frac{5}{72} a^{12} + \frac{5}{72} a^{11} - \frac{1}{24} a^{10} + \frac{13}{72} a^{9} + \frac{5}{72} a^{8} + \frac{4}{9} a^{7} + \frac{13}{72} a^{6} - \frac{5}{12} a^{5} - \frac{1}{36} a^{4} + \frac{2}{9} a^{3} - \frac{7}{18} a^{2} + \frac{4}{9} a + \frac{1}{9}$, $\frac{1}{72} a^{20} - \frac{1}{72} a^{18} - \frac{1}{72} a^{17} - \frac{1}{72} a^{16} + \frac{1}{72} a^{15} - \frac{1}{24} a^{14} + \frac{1}{72} a^{13} - \frac{1}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{7}{72} a^{9} - \frac{1}{18} a^{8} - \frac{5}{24} a^{7} - \frac{1}{12} a^{6} - \frac{13}{36} a^{5} + \frac{11}{36} a^{4} - \frac{5}{18} a^{3} - \frac{1}{3} a^{2} + \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{92254294691472494642181768} a^{21} + \frac{21129739948746137328317}{10250477187941388293575752} a^{20} + \frac{154389839476437320015285}{92254294691472494642181768} a^{19} - \frac{77383830781501562990507}{46127147345736247321090884} a^{18} - \frac{15377181689535417715390}{11531786836434061830272721} a^{17} + \frac{50218449803252984042101}{3843928945478020610090907} a^{16} + \frac{1541598390069580654173701}{46127147345736247321090884} a^{15} + \frac{336909068079418981483973}{11531786836434061830272721} a^{14} - \frac{1307785351605259125741575}{46127147345736247321090884} a^{13} + \frac{170059531277981827289146}{11531786836434061830272721} a^{12} - \frac{1064696780071962300379043}{46127147345736247321090884} a^{11} + \frac{287235122213373547585801}{7687857890956041220181814} a^{10} + \frac{18464213644787275932984161}{92254294691472494642181768} a^{9} - \frac{3182703362266327439993365}{92254294691472494642181768} a^{8} - \frac{16908171974888736377243255}{92254294691472494642181768} a^{7} + \frac{15120994637913061067842733}{46127147345736247321090884} a^{6} - \frac{7892425499710478119053967}{46127147345736247321090884} a^{5} + \frac{1428089763083523896007001}{3843928945478020610090907} a^{4} + \frac{321321530436987089417483}{23063573672868123660545442} a^{3} - \frac{1058281136094434015808598}{11531786836434061830272721} a^{2} + \frac{4270721035497921771082637}{11531786836434061830272721} a - \frac{2944968511200116059343665}{11531786836434061830272721}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 432957757.802 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_{11}^2$ (as 22T9):
| A solvable group of order 484 |
| The 49 conjugacy class representatives for $D_{11}^2$ |
| Character table for $D_{11}^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $22$ | $22$ | R | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.11.20.16 | $x^{11} + 11 x^{10} + 11$ | $11$ | $1$ | $20$ | $D_{11}$ | $[2]^{2}$ |