Normalized defining polynomial
\( x^{22} - 2 x^{21} + 5 x^{20} - 4 x^{19} + 4 x^{18} - 14 x^{17} + 63 x^{16} - 228 x^{15} + 497 x^{14} - 686 x^{13} + 792 x^{12} - 793 x^{11} + 1821 x^{10} - 3315 x^{9} + 78 x^{8} + 1215 x^{7} + 1528 x^{6} + 168 x^{5} - 351 x^{4} - 826 x^{3} - 4 x^{2} + 39 x - 5 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(499131506491608208145638755501=3^{11}\cdot 167^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{13} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{4} - \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{13} - \frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a$, $\frac{1}{25} a^{19} - \frac{2}{25} a^{16} + \frac{1}{25} a^{14} + \frac{11}{25} a^{13} + \frac{4}{25} a^{12} - \frac{8}{25} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{9}{25} a^{8} - \frac{12}{25} a^{7} - \frac{4}{25} a^{6} - \frac{3}{25} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{8}{25} a^{2} + \frac{8}{25} a - \frac{2}{5}$, $\frac{1}{25} a^{20} - \frac{2}{25} a^{17} + \frac{1}{25} a^{15} + \frac{1}{25} a^{14} + \frac{9}{25} a^{13} - \frac{3}{25} a^{12} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{6}{25} a^{9} + \frac{8}{25} a^{8} + \frac{1}{25} a^{7} + \frac{2}{25} a^{6} + \frac{12}{25} a^{3} - \frac{12}{25} a^{2} + \frac{2}{5} a$, $\frac{1}{74790684859346257243233256544712175} a^{21} + \frac{857988106759387599020154125064398}{74790684859346257243233256544712175} a^{20} - \frac{1351596222449286087852452617894714}{74790684859346257243233256544712175} a^{19} - \frac{6425853310328055129727887215841742}{74790684859346257243233256544712175} a^{18} + \frac{6762379571289284332427276884370789}{74790684859346257243233256544712175} a^{17} + \frac{4285205750638124361824024113672254}{74790684859346257243233256544712175} a^{16} - \frac{343724335705705181224297619438201}{74790684859346257243233256544712175} a^{15} + \frac{6384205603522217744360596241741933}{74790684859346257243233256544712175} a^{14} - \frac{1884280585364836706156005369070234}{14958136971869251448646651308942435} a^{13} - \frac{5541952319797508302485050839887762}{14958136971869251448646651308942435} a^{12} + \frac{24156897118986399242142402272294607}{74790684859346257243233256544712175} a^{11} - \frac{24617354741228346827965687965922574}{74790684859346257243233256544712175} a^{10} - \frac{17389026836853248890735358775663474}{74790684859346257243233256544712175} a^{9} + \frac{31394568081591371179455896303210266}{74790684859346257243233256544712175} a^{8} - \frac{5013405849484694349500907006304707}{74790684859346257243233256544712175} a^{7} + \frac{28237137326518672349767106153662047}{74790684859346257243233256544712175} a^{6} - \frac{3133137785359092594959939229613048}{74790684859346257243233256544712175} a^{5} - \frac{12675044360170921986291637043939873}{74790684859346257243233256544712175} a^{4} - \frac{30658995272537926911993162516138161}{74790684859346257243233256544712175} a^{3} + \frac{31458125394494544024561830175617056}{74790684859346257243233256544712175} a^{2} + \frac{18174525640623119556619899137665273}{74790684859346257243233256544712175} a + \frac{6970655187218301619405778577489518}{14958136971869251448646651308942435}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1424457.4515 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 44 |
| The 14 conjugacy class representatives for $D_{22}$ |
| Character table for $D_{22}$ |
Intermediate fields
| \(\Q(\sqrt{501}) \), 11.1.129891985607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 22 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 167 | Data not computed | ||||||