Normalized defining polynomial
\( x^{22} + 55 x^{20} + 1133 x^{18} + 9185 x^{16} - 18172 x^{14} - 910360 x^{12} - 7010124 x^{10} - 24410188 x^{8} - 38170561 x^{6} - 19759179 x^{4} - 3968789 x^{2} - 268037 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(486687322924512215289308333717958955894833152=2^{38}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{3}$, $\frac{1}{349637311369991964822318187678} a^{20} - \frac{20054287995790881018824447811}{174818655684995982411159093839} a^{18} + \frac{3473793716718496585435652650}{174818655684995982411159093839} a^{16} - \frac{79499284119704989425265347589}{349637311369991964822318187678} a^{14} - \frac{60575691207060298404439057397}{349637311369991964822318187678} a^{12} + \frac{25832975695524488674399659103}{349637311369991964822318187678} a^{10} + \frac{43457290445673504548660975087}{349637311369991964822318187678} a^{8} - \frac{100451805940427742447399452565}{349637311369991964822318187678} a^{6} - \frac{68283673597762495707935620304}{174818655684995982411159093839} a^{4} + \frac{100193079875665659737042962177}{349637311369991964822318187678} a^{2} + \frac{87505983959947380887809394505}{349637311369991964822318187678}$, $\frac{1}{41257202741659051849033546146004} a^{21} - \frac{1}{699274622739983929644636375356} a^{20} - \frac{796711094580377361359628146181}{10314300685414762962258386536501} a^{19} + \frac{20054287995790881018824447811}{349637311369991964822318187678} a^{18} - \frac{6461342672911414356042015166743}{41257202741659051849033546146004} a^{17} + \frac{167871068251558989240287788539}{699274622739983929644636375356} a^{16} + \frac{2034244383268776545974803015711}{10314300685414762962258386536501} a^{15} - \frac{47659685782645496492946873125}{349637311369991964822318187678} a^{14} - \frac{40514232158491117148353682975}{349637311369991964822318187678} a^{13} - \frac{57121482238967842003360018221}{349637311369991964822318187678} a^{12} - \frac{1960251632532323679956939890913}{10314300685414762962258386536501} a^{11} + \frac{37246419997367873434189858684}{174818655684995982411159093839} a^{10} + \frac{7801158823205157969570910163379}{20628601370829525924516773073002} a^{9} + \frac{32840341309830619465624529688}{174818655684995982411159093839} a^{8} + \frac{78835357425229416845536540628}{174818655684995982411159093839} a^{7} - \frac{37183424872284119981879820637}{349637311369991964822318187678} a^{6} - \frac{311386002880520973827030334447}{41257202741659051849033546146004} a^{5} + \frac{311386002880520973827030334447}{699274622739983929644636375356} a^{4} + \frac{4264400670330068988404868766140}{10314300685414762962258386536501} a^{3} + \frac{37312787904665161337058065831}{349637311369991964822318187678} a^{2} + \frac{14072998438759625973780536901625}{41257202741659051849033546146004} a + \frac{262131327410044583934508793173}{699274622739983929644636375356}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9178110471010 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||