Normalized defining polynomial
\( x^{22} + 72 x^{20} + 1935 x^{18} + 24510 x^{16} + 155250 x^{14} + 516744 x^{12} + 877113 x^{10} + 552870 x^{8} - 344925 x^{6} - 643680 x^{4} - 251991 x^{2} - 22707 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46938516011269707747849773730468750000000000=2^{10}\cdot 3^{21}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{33} a^{12} - \frac{4}{33} a^{10} - \frac{1}{33} a^{8} + \frac{5}{11} a^{6} - \frac{2}{11} a^{4} + \frac{4}{11} a^{2} + \frac{1}{11}$, $\frac{1}{33} a^{13} - \frac{4}{33} a^{11} - \frac{1}{33} a^{9} + \frac{5}{11} a^{7} - \frac{2}{11} a^{5} + \frac{4}{11} a^{3} + \frac{1}{11} a$, $\frac{1}{33} a^{14} + \frac{5}{33} a^{10} - \frac{4}{11} a^{6} - \frac{4}{11} a^{4} - \frac{5}{11} a^{2} + \frac{4}{11}$, $\frac{1}{99} a^{15} - \frac{2}{33} a^{11} - \frac{5}{11} a^{7} - \frac{5}{11} a^{5} + \frac{2}{11} a^{3} + \frac{5}{11} a$, $\frac{1}{198} a^{16} - \frac{1}{198} a^{15} - \frac{1}{66} a^{13} - \frac{5}{66} a^{11} - \frac{4}{33} a^{10} - \frac{5}{33} a^{9} - \frac{1}{11} a^{8} - \frac{1}{2} a^{7} + \frac{5}{22} a^{6} + \frac{7}{22} a^{5} + \frac{9}{22} a^{4} - \frac{3}{11} a^{3} - \frac{9}{22} a^{2} - \frac{3}{11} a - \frac{9}{22}$, $\frac{1}{198} a^{17} - \frac{1}{198} a^{15} - \frac{1}{66} a^{14} - \frac{1}{66} a^{13} - \frac{1}{66} a^{12} + \frac{3}{22} a^{11} + \frac{5}{33} a^{10} + \frac{1}{11} a^{9} + \frac{1}{66} a^{8} - \frac{3}{11} a^{7} + \frac{5}{11} a^{6} - \frac{3}{11} a^{5} - \frac{5}{22} a^{4} + \frac{7}{22} a^{3} + \frac{1}{22} a^{2} + \frac{7}{22} a - \frac{5}{22}$, $\frac{1}{198} a^{18} - \frac{1}{66} a^{14} - \frac{1}{66} a^{12} - \frac{1}{6} a^{11} - \frac{1}{11} a^{10} - \frac{1}{6} a^{9} + \frac{4}{33} a^{8} - \frac{1}{2} a^{7} - \frac{7}{22} a^{6} - \frac{4}{11} a^{4} - \frac{1}{2} a^{3} + \frac{1}{11} a^{2} - \frac{1}{2} a + \frac{3}{22}$, $\frac{1}{198} a^{19} - \frac{1}{198} a^{15} - \frac{1}{66} a^{13} - \frac{1}{66} a^{12} - \frac{5}{33} a^{11} - \frac{7}{66} a^{10} + \frac{4}{33} a^{9} + \frac{1}{66} a^{8} + \frac{5}{22} a^{7} + \frac{3}{11} a^{6} + \frac{2}{11} a^{5} - \frac{9}{22} a^{4} + \frac{3}{11} a^{3} + \frac{7}{22} a^{2} - \frac{9}{22} a + \frac{5}{11}$, $\frac{1}{10247101654015040562} a^{20} + \frac{881337423311735}{3415700551338346854} a^{18} + \frac{5555027134098619}{5123550827007520281} a^{16} - \frac{1}{198} a^{15} + \frac{1380530200296110}{569283425223057809} a^{14} - \frac{2477047815364445}{310518231939849714} a^{12} - \frac{3}{22} a^{11} - \frac{269383241374010935}{1707850275669173427} a^{10} - \frac{183318321353588911}{1138566850446115618} a^{8} - \frac{3}{11} a^{7} + \frac{51229515463834673}{569283425223057809} a^{6} - \frac{3}{11} a^{5} - \frac{1823350980823805}{1138566850446115618} a^{4} - \frac{1}{11} a^{3} - \frac{166866337897494857}{569283425223057809} a^{2} - \frac{5}{22} a - \frac{261886152199445192}{569283425223057809}$, $\frac{1}{297165947966436176298} a^{21} + \frac{416668321523068157}{297165947966436176298} a^{19} + \frac{57308065790740238}{148582973983218088149} a^{17} + \frac{387120814201821313}{297165947966436176298} a^{15} - \frac{4333526049276015}{1500838121042606951} a^{13} - \frac{1}{66} a^{12} - \frac{1418568139910929393}{99055315988812058766} a^{11} + \frac{2}{33} a^{10} - \frac{2563958099559103385}{33018438662937352922} a^{9} - \frac{5}{33} a^{8} + \frac{2431345770476542201}{33018438662937352922} a^{7} - \frac{5}{22} a^{6} + \frac{6597600753231394520}{16509219331468676461} a^{5} - \frac{9}{22} a^{4} - \frac{1150174072373685618}{16509219331468676461} a^{3} - \frac{2}{11} a^{2} + \frac{4551146442868225375}{16509219331468676461} a - \frac{1}{22}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 79325039918900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 2.10.10.10 | $x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |