Normalized defining polynomial
\( x^{22} + 55 x^{20} + 495 x^{18} - 17985 x^{16} - 433675 x^{14} - 3686375 x^{12} - 14668500 x^{10} - 29976650 x^{8} - 32599875 x^{6} - 18319125 x^{4} - 4728625 x^{2} - 435125 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42678484670527444674580840448000000000000000000000=2^{40}\cdot 5^{21}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $180.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8}$, $\frac{1}{5} a^{9}$, $\frac{1}{5} a^{10}$, $\frac{1}{5} a^{11}$, $\frac{1}{5} a^{12}$, $\frac{1}{5} a^{13}$, $\frac{1}{5} a^{14}$, $\frac{1}{25} a^{15}$, $\frac{1}{25} a^{16}$, $\frac{1}{25} a^{17}$, $\frac{1}{25} a^{18}$, $\frac{1}{25} a^{19}$, $\frac{1}{697537021828717668999015743725} a^{20} - \frac{7472575135707237810064792389}{697537021828717668999015743725} a^{18} + \frac{11390253863588306372277585482}{697537021828717668999015743725} a^{16} - \frac{4145856644779286505578250818}{139507404365743533799803148745} a^{14} - \frac{4444465143845279801199346579}{139507404365743533799803148745} a^{12} + \frac{10281005202230062419229959732}{139507404365743533799803148745} a^{10} - \frac{6516317766436800600196490539}{139507404365743533799803148745} a^{8} + \frac{9319795973451603893534907869}{27901480873148706759960629749} a^{6} - \frac{13291733774240039509625159118}{27901480873148706759960629749} a^{4} + \frac{1429590452121769469985673068}{27901480873148706759960629749} a^{2} - \frac{11676169398245896504342599582}{27901480873148706759960629749}$, $\frac{1}{82309368575788684941883857759550} a^{21} - \frac{1}{1395074043657435337998031487450} a^{20} - \frac{73489989750725385804933970567}{41154684287894342470941928879775} a^{19} - \frac{2042890573744146894989583736}{139507404365743533799803148745} a^{18} - \frac{518737882726237122066974379749}{82309368575788684941883857759550} a^{17} + \frac{16511227009560400387683044267}{1395074043657435337998031487450} a^{16} - \frac{317280931216583990623512554284}{41154684287894342470941928879775} a^{15} + \frac{2072928322389643252789125409}{139507404365743533799803148745} a^{14} + \frac{51358496602452133718721912919}{16461873715157736988376771551910} a^{13} + \frac{4444465143845279801199346579}{279014808731487067599606297490} a^{12} + \frac{256253830459453392049260647607}{8230936857578868494188385775955} a^{11} - \frac{5140502601115031209614979866}{139507404365743533799803148745} a^{10} - \frac{184617784558684994239842338638}{8230936857578868494188385775955} a^{9} - \frac{2138516310671190615976413921}{27901480873148706759960629749} a^{8} - \frac{427813055547079152832622307175}{1646187371515773698837677155191} a^{7} + \frac{9290842449848551433212860940}{27901480873148706759960629749} a^{6} - \frac{376010985125173227389113345855}{3292374743031547397675354310382} a^{5} - \frac{14609747098908667250335470631}{55802961746297413519921259498} a^{4} + \frac{670350336181629846974047950510}{1646187371515773698837677155191} a^{3} - \frac{714795226060884734992836534}{27901480873148706759960629749} a^{2} + \frac{1522905278624932975293492036613}{3292374743031547397675354310382} a - \frac{16225311474902810255618030167}{55802961746297413519921259498}$
Class group and class number
$C_{2}\times C_{14}$, which has order $28$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4340844699980000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.2853116706110000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | $20{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.11.11.1 | $x^{11} + 110 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.1 | $x^{11} + 110 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |