Normalized defining polynomial
\( x^{22} - 6 x^{21} + 9 x^{20} + 40 x^{19} + 45 x^{18} - 894 x^{17} + 419 x^{16} + 11784 x^{15} - 41070 x^{14} + 181440 x^{13} - 999564 x^{12} + 3332244 x^{11} - 10073016 x^{10} + 39717720 x^{9} - 131087040 x^{8} + 291509856 x^{7} - 493491996 x^{6} + 722343744 x^{5} - 613517940 x^{4} - 553234320 x^{3} + 2204807976 x^{2} - 2277211536 x + 827950104 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3443737680000000000000000000000000000000000000=2^{40}\cdot 3^{16}\cdot 5^{37}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $117.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{10} a^{11} + \frac{1}{5} a^{10} - \frac{1}{2} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{30} a^{12} - \frac{1}{30} a^{11} - \frac{1}{30} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{2}{5} a^{7} - \frac{1}{10} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{30} a^{13} + \frac{1}{30} a^{11} + \frac{1}{6} a^{9} - \frac{1}{15} a^{8} - \frac{1}{2} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{60} a^{14} - \frac{1}{60} a^{13} - \frac{1}{60} a^{12} + \frac{1}{60} a^{11} - \frac{2}{15} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{3}{10} a^{6} + \frac{1}{10} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{60} a^{15} + \frac{1}{60} a^{11} - \frac{2}{15} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} + \frac{3}{10} a^{6} + \frac{3}{10} a^{5} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{60} a^{16} - \frac{1}{60} a^{12} - \frac{1}{10} a^{10} + \frac{1}{6} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{300} a^{17} - \frac{1}{300} a^{16} - \frac{1}{300} a^{15} - \frac{1}{60} a^{13} - \frac{1}{100} a^{12} - \frac{7}{300} a^{11} - \frac{7}{50} a^{10} + \frac{1}{30} a^{8} + \frac{23}{50} a^{7} + \frac{11}{25} a^{6} + \frac{17}{50} a^{5} + \frac{2}{5} a^{3} - \frac{3}{25} a^{2} - \frac{2}{25} a - \frac{7}{25}$, $\frac{1}{300} a^{18} - \frac{1}{150} a^{16} - \frac{1}{300} a^{15} - \frac{1}{100} a^{13} - \frac{1}{60} a^{12} - \frac{7}{150} a^{11} - \frac{8}{75} a^{10} - \frac{1}{6} a^{9} - \frac{1}{25} a^{8} - \frac{3}{10} a^{7} - \frac{3}{25} a^{6} + \frac{11}{25} a^{5} - \frac{3}{25} a^{3} + \frac{2}{5} a^{2} - \frac{4}{25} a - \frac{2}{25}$, $\frac{1}{300} a^{19} + \frac{1}{150} a^{16} - \frac{1}{150} a^{15} + \frac{1}{150} a^{14} + \frac{3}{100} a^{11} + \frac{3}{25} a^{10} + \frac{7}{75} a^{9} - \frac{1}{2} a^{7} + \frac{8}{25} a^{6} + \frac{19}{50} a^{5} + \frac{12}{25} a^{4} - \frac{11}{25} a - \frac{4}{25}$, $\frac{1}{300} a^{20} - \frac{1}{300} a^{15} - \frac{1}{60} a^{12} - \frac{1}{60} a^{11} + \frac{13}{75} a^{10} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{2} a^{5} + \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{4}{25}$, $\frac{1}{334348422138928771557969004146674136887931007557861061199442201756854652097200} a^{21} + \frac{73852928066681393033517931391211625364617324323167606892167953332385039199}{111449474046309590519323001382224712295977002519287020399814067252284884032400} a^{20} + \frac{11913480441540698363454491561109114001518040133634261538481954054824671307}{9287456170525799209943583448518726024664750209940585033317838937690407002700} a^{19} + \frac{27677561377725831148730095816589595421490972905175163758722278870065240527}{20896776383683048222373062759167133555495687972366316324965137609803415756075} a^{18} - \frac{3291992121943543575880803978661798357094676504013121483546052582908885077}{4457978961852383620772920055288988491839080100771480815992562690091395361296} a^{17} - \frac{303053400341012187942129719223358221988082762291651031340216157302389827599}{37149824682103196839774333794074904098659000839762340133271355750761628010800} a^{16} - \frac{1310846439304986789404038234458212433981993073870440135110377429907822491139}{167174211069464385778984502073337068443965503778930530599721100878427326048600} a^{15} + \frac{82045535959044284734640212452273296766417896989443520525004467020800744479}{55724737023154795259661500691112356147988501259643510199907033626142442016200} a^{14} - \frac{36308435940192232676466400222315629878100169888336731344527605517494078591}{9287456170525799209943583448518726024664750209940585033317838937690407002700} a^{13} + \frac{10046318413307780564265062553906115107533697548277699425398763278364750307}{928745617052579920994358344851872602466475020994058503331783893769040700270} a^{12} + \frac{35255775345141943963987577479961412132299379231046798501242753612945089317}{9287456170525799209943583448518726024664750209940585033317838937690407002700} a^{11} + \frac{16932694983497569163938728695816689462912913615191365142904731253715737861}{4643728085262899604971791724259363012332375104970292516658919468845203501350} a^{10} - \frac{895921229451421734947764295759066950580889009934164098032509736547775047258}{6965592127894349407457687586389044518498562657455438774988379203267805252025} a^{9} + \frac{3017359594235585653283604878237031119739000360924501576836832100919637010399}{13931184255788698814915375172778089036997125314910877549976758406535610504050} a^{8} - \frac{205619044348150440902984976656166358738696156971954619161270389403507898316}{1393118425578869881491537517277808903699712531491087754997675840653561050405} a^{7} - \frac{85165947867125293510203175955728128608885101616265716609815330162228752319}{185749123410515984198871668970374520493295004198811700666356778753808140054} a^{6} + \frac{4277477481713637792754955611309857402341680887861762696377799996362392129717}{9287456170525799209943583448518726024664750209940585033317838937690407002700} a^{5} + \frac{1200757034453158353793885878423902995990385174976349177704134831793535107703}{9287456170525799209943583448518726024664750209940585033317838937690407002700} a^{4} + \frac{1130160588433552835260351911957568071374047542498611354524799290675395307347}{2321864042631449802485895862129681506166187552485146258329459734422601750675} a^{3} + \frac{192601417376081757590619490269460796826497327519139050550849252379548251471}{464372808526289960497179172425936301233237510497029251665891946884520350135} a^{2} - \frac{1279993904075595098405360081074082892077002768213400137475285070266861714501}{4643728085262899604971791724259363012332375104970292516658919468845203501350} a - \frac{883684164559392238657959600736053948359431277083339802711376149631988999859}{4643728085262899604971791724259363012332375104970292516658919468845203501350}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1700186456810000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.3.6561000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $22$ | $16{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.4.8.7 | $x^{4} + 4 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.4.8.7 | $x^{4} + 4 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.24.451 | $x^{12} + 4 x^{11} + 4 x^{9} - 2 x^{8} + 2 x^{6} + 2 x^{4} + 4 x^{2} + 4 x - 2$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.10.19.16 | $x^{10} + 85$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ | |