Normalized defining polynomial
\( x^{22} + 94 x^{20} + 2826 x^{18} + 37945 x^{16} + 251867 x^{14} + 761654 x^{12} + 230402 x^{10} - 4536140 x^{8} - 11307192 x^{6} - 11114418 x^{4} - 4607953 x^{2} - 605699 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34222877449943760059204182577145233543266304=2^{22}\cdot 467\cdot 1297^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 467, 1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{16} + \frac{2}{5} a^{12} + \frac{1}{5} a^{10} - \frac{1}{5} a^{6} - \frac{2}{5} a^{4} + \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{5} a^{19} + \frac{1}{5} a^{17} + \frac{2}{5} a^{13} + \frac{1}{5} a^{11} - \frac{1}{5} a^{7} - \frac{2}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a$, $\frac{1}{331865177580351091207339099081898585} a^{20} + \frac{14244646189809094332973027909783021}{331865177580351091207339099081898585} a^{18} - \frac{9141184628749669797228397358366058}{66373035516070218241467819816379717} a^{16} + \frac{128579042289616817408632446514320522}{331865177580351091207339099081898585} a^{14} - \frac{4110910530584844065938614409533824}{10705328309043583587333519325222535} a^{12} - \frac{250270118593370811617403171486128}{66373035516070218241467819816379717} a^{10} + \frac{75422457812235556748042015991445539}{331865177580351091207339099081898585} a^{8} - \frac{121948990553504580317697721097092902}{331865177580351091207339099081898585} a^{6} - \frac{104306827266859890632561712675580323}{331865177580351091207339099081898585} a^{4} + \frac{21171959406408774036420046177520957}{331865177580351091207339099081898585} a^{2} + \frac{25034550753200329565156845059355505}{66373035516070218241467819816379717}$, $\frac{1}{331865177580351091207339099081898585} a^{21} + \frac{14244646189809094332973027909783021}{331865177580351091207339099081898585} a^{19} - \frac{9141184628749669797228397358366058}{66373035516070218241467819816379717} a^{17} + \frac{128579042289616817408632446514320522}{331865177580351091207339099081898585} a^{15} - \frac{4110910530584844065938614409533824}{10705328309043583587333519325222535} a^{13} - \frac{250270118593370811617403171486128}{66373035516070218241467819816379717} a^{11} + \frac{75422457812235556748042015991445539}{331865177580351091207339099081898585} a^{9} - \frac{121948990553504580317697721097092902}{331865177580351091207339099081898585} a^{7} - \frac{104306827266859890632561712675580323}{331865177580351091207339099081898585} a^{5} + \frac{21171959406408774036420046177520957}{331865177580351091207339099081898585} a^{3} + \frac{25034550753200329565156845059355505}{66373035516070218241467819816379717} a$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 648757905796 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 45056 |
| The 200 conjugacy class representatives for t22n32 are not computed |
| Character table for t22n32 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 467 | Data not computed | ||||||
| 1297 | Data not computed | ||||||