Normalized defining polynomial
\( x^{22} + 44 x^{20} - 44 x^{19} + 1232 x^{18} - 12892 x^{17} + 75790 x^{16} - 585508 x^{15} + 2442352 x^{14} - 15102780 x^{13} + 119139548 x^{12} - 659105044 x^{11} + 3437427653 x^{10} - 18050078772 x^{9} + 84322007704 x^{8} - 343375574872 x^{7} + 1171364754340 x^{6} - 3093851273920 x^{5} + 6196361225120 x^{4} - 9782751374528 x^{3} + 11516770365584 x^{2} - 7712130115008 x + 1476749756992 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(336280057382622056553974616702903009453525746621349888=2^{22}\cdot 3^{11}\cdot 11^{40}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $271.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{484} a^{11} + \frac{1}{22} a^{9} - \frac{1}{22} a^{8} - \frac{5}{22} a^{7} - \frac{7}{22} a^{6} - \frac{9}{44} a^{5} - \frac{4}{11} a^{4} + \frac{1}{11} a^{3} - \frac{1}{22} a^{2} - \frac{5}{11} a - \frac{17}{121}$, $\frac{1}{2904} a^{12} - \frac{31}{264} a^{10} + \frac{3}{88} a^{9} - \frac{7}{88} a^{8} + \frac{21}{88} a^{7} + \frac{23}{132} a^{6} - \frac{9}{88} a^{5} + \frac{2}{11} a^{4} - \frac{15}{44} a^{3} + \frac{17}{66} a^{2} + \frac{75}{242} a - \frac{1}{3}$, $\frac{1}{2904} a^{13} + \frac{1}{2904} a^{11} + \frac{3}{88} a^{10} + \frac{1}{88} a^{9} + \frac{13}{88} a^{8} + \frac{29}{132} a^{7} - \frac{21}{88} a^{6} - \frac{21}{44} a^{5} - \frac{3}{44} a^{4} - \frac{2}{33} a^{3} + \frac{53}{242} a^{2} - \frac{8}{33} a - \frac{1}{121}$, $\frac{1}{8712} a^{14} + \frac{1}{8712} a^{13} - \frac{1}{8712} a^{12} - \frac{1}{4356} a^{11} - \frac{29}{396} a^{10} - \frac{2}{33} a^{9} - \frac{53}{792} a^{8} - \frac{35}{792} a^{7} - \frac{305}{792} a^{6} - \frac{4}{33} a^{5} + \frac{91}{396} a^{4} + \frac{107}{1089} a^{3} + \frac{85}{1089} a^{2} + \frac{311}{1089} a + \frac{380}{1089}$, $\frac{1}{8712} a^{15} + \frac{1}{8712} a^{13} - \frac{1}{8712} a^{12} - \frac{1}{2904} a^{11} + \frac{37}{792} a^{10} + \frac{19}{198} a^{9} + \frac{7}{88} a^{8} - \frac{5}{66} a^{7} - \frac{1}{9} a^{6} - \frac{113}{396} a^{5} + \frac{53}{726} a^{4} - \frac{79}{198} a^{3} + \frac{731}{2178} a^{2} - \frac{32}{363} a - \frac{299}{1089}$, $\frac{1}{17424} a^{16} - \frac{1}{17424} a^{14} - \frac{1}{17424} a^{12} - \frac{59}{528} a^{10} + \frac{1}{12} a^{9} + \frac{199}{1584} a^{8} - \frac{5}{132} a^{7} + \frac{17}{528} a^{6} + \frac{31}{1452} a^{5} - \frac{223}{792} a^{4} + \frac{59}{242} a^{3} - \frac{95}{396} a^{2} + \frac{133}{726} a + \frac{26}{99}$, $\frac{1}{52272} a^{17} - \frac{1}{17424} a^{15} + \frac{1}{26136} a^{14} - \frac{1}{52272} a^{13} - \frac{1}{52272} a^{11} - \frac{29}{2376} a^{10} - \frac{11}{432} a^{9} + \frac{13}{108} a^{8} + \frac{461}{4752} a^{7} + \frac{571}{26136} a^{6} - \frac{175}{792} a^{5} + \frac{1151}{13068} a^{4} + \frac{725}{13068} a^{3} - \frac{83}{242} a^{2} + \frac{1}{33} a + \frac{1129}{3267}$, $\frac{1}{104544} a^{18} - \frac{1}{34848} a^{16} + \frac{1}{52272} a^{15} - \frac{1}{104544} a^{14} - \frac{1}{104544} a^{12} - \frac{49}{52272} a^{11} + \frac{97}{864} a^{10} + \frac{29}{594} a^{9} + \frac{569}{9504} a^{8} - \frac{9527}{52272} a^{7} + \frac{347}{1584} a^{6} - \frac{2413}{26136} a^{5} + \frac{3101}{26136} a^{4} + \frac{37}{121} a^{3} + \frac{5}{33} a^{2} + \frac{119}{3267} a + \frac{18}{121}$, $\frac{1}{209088} a^{19} - \frac{1}{209088} a^{17} + \frac{1}{104544} a^{16} + \frac{5}{209088} a^{15} + \frac{1}{52272} a^{14} + \frac{1}{23232} a^{13} - \frac{1}{104544} a^{12} - \frac{181}{209088} a^{11} + \frac{61}{528} a^{10} + \frac{67}{576} a^{9} - \frac{11551}{104544} a^{8} - \frac{13}{594} a^{7} + \frac{743}{4356} a^{6} - \frac{24685}{52272} a^{5} + \frac{161}{26136} a^{4} + \frac{5131}{13068} a^{3} + \frac{493}{3267} a^{2} + \frac{5}{484} a - \frac{659}{6534}$, $\frac{1}{627264} a^{20} - \frac{1}{627264} a^{19} - \frac{1}{627264} a^{18} + \frac{1}{209088} a^{17} + \frac{5}{209088} a^{16} + \frac{23}{627264} a^{15} + \frac{17}{627264} a^{14} + \frac{37}{627264} a^{13} + \frac{49}{627264} a^{12} - \frac{37}{57024} a^{11} + \frac{905}{19008} a^{10} - \frac{65375}{627264} a^{9} + \frac{26093}{313632} a^{8} + \frac{5063}{78408} a^{7} + \frac{6227}{39204} a^{6} - \frac{21265}{156816} a^{5} - \frac{50}{1089} a^{4} + \frac{2857}{13068} a^{3} + \frac{7543}{19602} a^{2} + \frac{5465}{39204} a + \frac{661}{1782}$, $\frac{1}{323076652590217562985101568419059062461584628975199897500906869451231399862638883167467642368} a^{21} - \frac{254386711861246915588774966984749632113705543951286497710962719821485911720623168627287}{323076652590217562985101568419059062461584628975199897500906869451231399862638883167467642368} a^{20} + \frac{220333592388513020820225903135586337988993573891000092744278106989778418492310260617383}{107692217530072520995033856139686354153861542991733299166968956483743799954212961055822547456} a^{19} - \frac{440941402690976556804317655112087975573308793041123564562639750729839572812803068694935}{323076652590217562985101568419059062461584628975199897500906869451231399862638883167467642368} a^{18} - \frac{611022350726278589454417922363555114942337865098601743129634771702382947876657095986061}{107692217530072520995033856139686354153861542991733299166968956483743799954212961055822547456} a^{17} + \frac{6624642872693201251093630162486114500577646561367786538231772578507746700268900050900349}{323076652590217562985101568419059062461584628975199897500906869451231399862638883167467642368} a^{16} + \frac{4784118699666955090719250970758102006462065604449524770355296081088472106236512430012857}{107692217530072520995033856139686354153861542991733299166968956483743799954212961055822547456} a^{15} + \frac{5527757006826984635339177491603365019311391978001863368005634843039786522530300254370999}{323076652590217562985101568419059062461584628975199897500906869451231399862638883167467642368} a^{14} - \frac{606792400965678301239859583333424702242749862006986444511310509687963259574258596275}{3263400531214318818031328973929889519813986151264645429302089590416478786491301850176440832} a^{13} + \frac{73554150669785347850365501919624784561578700389461494551473202646167990891373254408201}{1329533549753981740679430322712177211776068431996707397123073536836343209311271124145957376} a^{12} - \frac{73363955753806039436543164657235946570213176665799772317111097799955297420828448242178361}{323076652590217562985101568419059062461584628975199897500906869451231399862638883167467642368} a^{11} - \frac{21620912167632585137488315199631978173017779415850607140366432961886758042750766071407296685}{323076652590217562985101568419059062461584628975199897500906869451231399862638883167467642368} a^{10} + \frac{165863107295845793963886098950380378618707612725308924986034842990712889658443664260967317}{1495725243473229458264359113051199363248076985996295821763457728940886110475180014664202048} a^{9} - \frac{6181428493587469138026479438690439995177331252275200737904142256266693646228011125754378191}{26923054382518130248758464034921588538465385747933324791742239120935949988553240263955636864} a^{8} - \frac{4768958958501082429518634864222054065449386986515238737185172991345474518199045082356510119}{80769163147554390746275392104764765615396157243799974375226717362807849965659720791866910592} a^{7} - \frac{4204872618387898543565212238490018829757986318383659453071530423828736779512975392108521077}{8974351460839376749586154678307196179488461915977774930580746373645316662851080087985212288} a^{6} + \frac{2915497590926076322535496423584299885258716625669515586564781794428955071644587272229553131}{20192290786888597686568848026191191403849039310949993593806679340701962491414930197966727648} a^{5} + \frac{554836536433692795119427923291067098754267317414031876679126245077226425364418708921302007}{6730763595629532562189616008730397134616346436983331197935559780233987497138310065988909216} a^{4} + \frac{3902155911288929216916513197146259514760035740149767655117704896014867037674065434097147203}{20192290786888597686568848026191191403849039310949993593806679340701962491414930197966727648} a^{3} - \frac{83711954872429907095811616973943052781338882332636639701924463418608863500393321403050481}{611887599602684778380874182611854284965122403362121017994141798203089772467119096908082656} a^{2} - \frac{9519962517370397730955590520399203497219955360112762731329718067754193311865309514182787}{1262018174180537355410553001636949462740564956934374599612917458793872655713433137372920478} a - \frac{1049671614747951419960231024214141298158798259597808076508371359099850304283246032723793293}{5048072696722149421642212006547797850962259827737498398451669835175490622853732549491681912}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13731470738200000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_{11}^2$ (as 22T9):
| A solvable group of order 484 |
| The 49 conjugacy class representatives for $D_{11}^2$ |
| Character table for $D_{11}^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $22$ | $22$ | R | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.11.20.16 | $x^{11} + 11 x^{10} + 11$ | $11$ | $1$ | $20$ | $D_{11}$ | $[2]^{2}$ |
| 11.11.20.16 | $x^{11} + 11 x^{10} + 11$ | $11$ | $1$ | $20$ | $D_{11}$ | $[2]^{2}$ |