/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^22 - 22*x^20 + 209*x^18 - 1122*x^16 + 3740*x^14 - 8008*x^12 - 121*x^11 + 11011*x^10 + 1331*x^9 - 9438*x^8 - 5324*x^7 + 4719*x^6 + 9317*x^5 - 1210*x^4 - 6655*x^3 + 121*x^2 + 1331*x + 1129, 22, 18, [2, 10], 322170665670052381217287483857714996337890625, [5, 11], [1, a, a^2, a^3, a^4, a^5, 1/3*a^6 - 1/3*a^5 - 1/3*a^3 + 1/3*a + 1/3, 1/3*a^7 - 1/3*a^5 - 1/3*a^4 - 1/3*a^3 + 1/3*a^2 - 1/3*a + 1/3, 1/3*a^8 + 1/3*a^5 - 1/3*a^4 - 1/3*a^2 - 1/3*a + 1/3, 1/3*a^9 - 1/3*a^2 - 1/3, 1/3*a^10 - 1/3*a^3 - 1/3*a, 1/45*a^11 + 4/45*a^9 - 1/45*a^7 + 13/45*a^5 + 2/9*a^3 - 1/3*a^2 - 11/45*a - 8/45, 1/45*a^12 + 4/45*a^10 - 1/45*a^8 - 2/45*a^6 + 1/3*a^5 + 2/9*a^4 - 11/45*a^2 + 22/45*a - 1/3, 1/45*a^13 - 2/45*a^9 + 2/45*a^7 + 2/5*a^5 + 1/5*a^3 + 22/45*a^2 + 14/45*a + 2/45, 1/45*a^14 - 2/45*a^10 + 2/45*a^8 + 1/15*a^6 + 1/3*a^5 + 1/5*a^4 - 8/45*a^3 + 14/45*a^2 - 13/45*a - 1/3, 1/45*a^15 - 1/9*a^9 + 1/45*a^7 + 1/9*a^5 - 8/45*a^4 + 4/45*a^3 + 17/45*a^2 - 7/45*a - 16/45, 1/45*a^16 - 1/9*a^10 + 1/45*a^8 + 1/9*a^6 - 8/45*a^5 + 4/45*a^4 + 17/45*a^3 - 7/45*a^2 - 16/45*a, 1/675*a^17 - 4/675*a^16 - 2/675*a^15 + 4/675*a^14 - 1/675*a^13 + 4/675*a^12 - 7/675*a^11 + 58/675*a^10 - 17/135*a^9 - 2/45*a^8 + 2/75*a^7 - 28/225*a^6 - 22/75*a^5 + 37/75*a^4 - 103/225*a^3 + 43/675*a^2 + 182/675*a - 14/675, 1/675*a^18 - 1/225*a^16 - 4/675*a^15 - 2/225*a^12 + 14/225*a^10 - 8/135*a^9 - 34/225*a^8 + 2/75*a^7 - 8/225*a^6 + 52/225*a^5 + 41/225*a^4 - 218/675*a^3 + 68/225*a^2 - 77/225*a - 41/675, 1/675*a^19 - 1/675*a^16 - 2/225*a^15 - 1/225*a^14 + 2/225*a^13 - 1/225*a^12 + 2/225*a^11 + 29/675*a^10 + 1/225*a^9 - 8/75*a^8 + 1/9*a^7 - 4/75*a^6 - 97/225*a^5 - 119/675*a^4 + 104/225*a^3 - 49/225*a^2 - 34/135*a + 4/25, 1/675*a^20 + 1/135*a^16 - 1/135*a^15 - 1/135*a^14 - 4/675*a^13 - 1/135*a^12 + 7/675*a^11 - 44/675*a^10 + 8/675*a^9 + 1/15*a^8 - 1/225*a^7 - 2/15*a^6 + 43/675*a^5 - 17/45*a^4 + 73/225*a^3 - 277/675*a^2 + 61/135*a - 119/675, 1/675*a^21 + 1/135*a^15 + 2/225*a^14 + 2/675*a^12 + 2/225*a^11 + 2/75*a^10 + 16/135*a^9 - 16/225*a^8 + 2/45*a^7 - 2/675*a^6 - 4/9*a^5 + 88/225*a^4 + 248/675*a^3 - 1/3*a^2 + 112/225*a - 2/27], 0, 1, [], 1, [ (1)/(45)*a^(11) - (11)/(45)*a^(9) + (44)/(45)*a^(7) - (77)/(45)*a^(5) + (11)/(9)*a^(3) - (11)/(45)*a - (38)/(45) , (4)/(675)*a^(21) - (13)/(675)*a^(20) - (106)/(675)*a^(19) + (49)/(135)*a^(18) + (1181)/(675)*a^(17) - (626)/(225)*a^(16) - (7256)/(675)*a^(15) + (7456)/(675)*a^(14) + (1079)/(27)*a^(13) - (70)/(3)*a^(12) - (463)/(5)*a^(11) + (13553)/(675)*a^(10) + (90368)/(675)*a^(9) + (953)/(45)*a^(8) - (27431)/(225)*a^(7) - (61616)/(675)*a^(6) + (45689)/(675)*a^(5) + (92033)/(675)*a^(4) + (7234)/(675)*a^(3) - (6106)/(75)*a^(2) - (36794)/(675)*a - (2317)/(135) , (8)/(225)*a^(21) + (22)/(675)*a^(20) - (32)/(45)*a^(19) - (391)/(675)*a^(18) + (154)/(25)*a^(17) + (2951)/(675)*a^(16) - (20407)/(675)*a^(15) - (12299)/(675)*a^(14) + (62189)/(675)*a^(13) + (30676)/(675)*a^(12) - (120758)/(675)*a^(11) - (48299)/(675)*a^(10) + (47902)/(225)*a^(9) + (1309)/(15)*a^(8) - (5689)/(45)*a^(7) - (8974)/(75)*a^(6) + (571)/(675)*a^(5) + (3656)/(25)*a^(4) + (8336)/(675)*a^(3) - (62719)/(675)*a^(2) + (13931)/(675)*a + (244)/(75) , (2)/(675)*a^(21) - (1)/(675)*a^(20) - (16)/(225)*a^(19) + (8)/(225)*a^(18) + (493)/(675)*a^(17) - (77)/(225)*a^(16) - (2819)/(675)*a^(15) + (361)/(225)*a^(14) + (364)/(25)*a^(13) - (2099)/(675)*a^(12) - (21869)/(675)*a^(11) - (44)/(15)*a^(10) + (33118)/(675)*a^(9) + (5984)/(225)*a^(8) - (4339)/(75)*a^(7) - (36664)/(675)*a^(6) + (7531)/(135)*a^(5) + (12697)/(225)*a^(4) - (18143)/(675)*a^(3) - (21052)/(675)*a^(2) - (779)/(75)*a + (1829)/(675) , (4)/(675)*a^(21) + (19)/(675)*a^(20) - (1)/(9)*a^(19) - (23)/(45)*a^(18) + (577)/(675)*a^(17) + (2602)/(675)*a^(16) - (2399)/(675)*a^(15) - (10633)/(675)*a^(14) + (6067)/(675)*a^(13) + (25906)/(675)*a^(12) - (3334)/(225)*a^(11) - (39238)/(675)*a^(10) + (2969)/(225)*a^(9) + (12481)/(225)*a^(8) + (736)/(75)*a^(7) - (21971)/(675)*a^(6) - (28589)/(675)*a^(5) + (2369)/(225)*a^(4) + (5029)/(135)*a^(3) - (208)/(75)*a^(2) - (5492)/(675)*a - (1523)/(225) , (13)/(135)*a^(21) - (62)/(675)*a^(20) - (1334)/(675)*a^(19) + (157)/(75)*a^(18) + (11657)/(675)*a^(17) - (13498)/(675)*a^(16) - (56312)/(675)*a^(15) + (4676)/(45)*a^(14) + (54329)/(225)*a^(13) - (215048)/(675)*a^(12) - (285772)/(675)*a^(11) + (386534)/(675)*a^(10) + (300787)/(675)*a^(9) - (114781)/(225)*a^(8) - (84863)/(225)*a^(7) + (1484)/(675)*a^(6) + (75992)/(135)*a^(5) + (192871)/(675)*a^(4) - (384443)/(675)*a^(3) - (901)/(135)*a^(2) + (35296)/(675)*a + (13762)/(135) , (1)/(675)*a^(21) - (2)/(675)*a^(20) - (26)/(675)*a^(19) + (11)/(135)*a^(18) + (278)/(675)*a^(17) - (631)/(675)*a^(16) - (319)/(135)*a^(15) + (1337)/(225)*a^(14) + (1753)/(225)*a^(13) - (15688)/(675)*a^(12) - (1871)/(135)*a^(11) + (39311)/(675)*a^(10) + (4681)/(675)*a^(9) - (6949)/(75)*a^(8) + (907)/(45)*a^(7) + (58252)/(675)*a^(6) - (24254)/(675)*a^(5) - (25808)/(675)*a^(4) + (2452)/(225)*a^(3) + (1352)/(135)*a^(2) + (6187)/(675)*a - (6172)/(675) , (127)/(675)*a^(21) - (16)/(225)*a^(20) - (97)/(25)*a^(19) + (964)/(675)*a^(18) + (22906)/(675)*a^(17) - (8047)/(675)*a^(16) - (110419)/(675)*a^(15) + (35728)/(675)*a^(14) + (318827)/(675)*a^(13) - (9911)/(75)*a^(12) - (22402)/(27)*a^(11) + (105583)/(675)*a^(10) + (194978)/(225)*a^(9) + (7636)/(75)*a^(8) - (124682)/(225)*a^(7) - (17783)/(27)*a^(6) + (23594)/(75)*a^(5) + (165853)/(225)*a^(4) - (347)/(5)*a^(3) - (71927)/(675)*a^(2) - (12623)/(135)*a + (1168)/(75) , (116)/(675)*a^(21) + (61)/(225)*a^(20) - (2222)/(675)*a^(19) - (3533)/(675)*a^(18) + (661)/(25)*a^(17) + (28613)/(675)*a^(16) - (579)/(5)*a^(15) - (2807)/(15)*a^(14) + (22616)/(75)*a^(13) + (331264)/(675)*a^(12) - (11952)/(25)*a^(11) - (542557)/(675)*a^(10) + (94696)/(225)*a^(9) + (206359)/(225)*a^(8) + (6871)/(225)*a^(7) - (555331)/(675)*a^(6) - (140341)/(225)*a^(5) + (304504)/(675)*a^(4) + (373952)/(675)*a^(3) - (27011)/(225)*a^(2) - (125402)/(675)*a - (7982)/(75) , (146)/(675)*a^(21) - (23)/(135)*a^(20) - (1036)/(225)*a^(19) + (821)/(225)*a^(18) + (634)/(15)*a^(17) - (22676)/(675)*a^(16) - (49373)/(225)*a^(15) + (4724)/(27)*a^(14) + (480217)/(675)*a^(13) - (129274)/(225)*a^(12) - (1014607)/(675)*a^(11) + (840212)/(675)*a^(10) + (1423541)/(675)*a^(9) - (43584)/(25)*a^(8) - (456232)/(225)*a^(7) + (953639)/(675)*a^(6) + (979991)/(675)*a^(5) - (8027)/(15)*a^(4) - (484817)/(675)*a^(3) + (3898)/(675)*a^(2) + (133678)/(675)*a + (60883)/(675) , (1298)/(675)*a^(21) - (2227)/(675)*a^(20) - (8039)/(225)*a^(19) + (40619)/(675)*a^(18) + (7579)/(27)*a^(17) - 461*a^(16) - (821254)/(675)*a^(15) + (48272)/(25)*a^(14) + (715562)/(225)*a^(13) - (3252722)/(675)*a^(12) - (3467963)/(675)*a^(11) + (1594744)/(225)*a^(10) + (3666263)/(675)*a^(9) - (1098026)/(225)*a^(8) - (141561)/(25)*a^(7) - (123119)/(135)*a^(6) + (963442)/(135)*a^(5) + (715229)/(225)*a^(4) - (229016)/(45)*a^(3) - (391201)/(675)*a^(2) + (67823)/(225)*a + (575068)/(675) ], 40057640608100, [[x^2 - x - 1, 1]]]