Normalized defining polynomial
\( x^{22} - 22 x^{20} + 209 x^{18} - 1122 x^{16} + 3740 x^{14} - 8008 x^{12} - 121 x^{11} + 11011 x^{10} + \cdots + 1129 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[2, 10]$ |
| |
| Discriminant: |
\(322170665670052381217287483857714996337890625\)
\(\medspace = 5^{16}\cdot 11^{32}\)
|
| |
| Root discriminant: | \(105.46\) |
| |
| Galois root discriminant: | $5^{3/4}11^{84/55}\approx 130.2321317975223$ | ||
| Ramified primes: |
\(5\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{45}a^{11}+\frac{4}{45}a^{9}-\frac{1}{45}a^{7}+\frac{13}{45}a^{5}+\frac{2}{9}a^{3}-\frac{1}{3}a^{2}-\frac{11}{45}a-\frac{8}{45}$, $\frac{1}{45}a^{12}+\frac{4}{45}a^{10}-\frac{1}{45}a^{8}-\frac{2}{45}a^{6}+\frac{1}{3}a^{5}+\frac{2}{9}a^{4}-\frac{11}{45}a^{2}+\frac{22}{45}a-\frac{1}{3}$, $\frac{1}{45}a^{13}-\frac{2}{45}a^{9}+\frac{2}{45}a^{7}+\frac{2}{5}a^{5}+\frac{1}{5}a^{3}+\frac{22}{45}a^{2}+\frac{14}{45}a+\frac{2}{45}$, $\frac{1}{45}a^{14}-\frac{2}{45}a^{10}+\frac{2}{45}a^{8}+\frac{1}{15}a^{6}+\frac{1}{3}a^{5}+\frac{1}{5}a^{4}-\frac{8}{45}a^{3}+\frac{14}{45}a^{2}-\frac{13}{45}a-\frac{1}{3}$, $\frac{1}{45}a^{15}-\frac{1}{9}a^{9}+\frac{1}{45}a^{7}+\frac{1}{9}a^{5}-\frac{8}{45}a^{4}+\frac{4}{45}a^{3}+\frac{17}{45}a^{2}-\frac{7}{45}a-\frac{16}{45}$, $\frac{1}{45}a^{16}-\frac{1}{9}a^{10}+\frac{1}{45}a^{8}+\frac{1}{9}a^{6}-\frac{8}{45}a^{5}+\frac{4}{45}a^{4}+\frac{17}{45}a^{3}-\frac{7}{45}a^{2}-\frac{16}{45}a$, $\frac{1}{675}a^{17}-\frac{4}{675}a^{16}-\frac{2}{675}a^{15}+\frac{4}{675}a^{14}-\frac{1}{675}a^{13}+\frac{4}{675}a^{12}-\frac{7}{675}a^{11}+\frac{58}{675}a^{10}-\frac{17}{135}a^{9}-\frac{2}{45}a^{8}+\frac{2}{75}a^{7}-\frac{28}{225}a^{6}-\frac{22}{75}a^{5}+\frac{37}{75}a^{4}-\frac{103}{225}a^{3}+\frac{43}{675}a^{2}+\frac{182}{675}a-\frac{14}{675}$, $\frac{1}{675}a^{18}-\frac{1}{225}a^{16}-\frac{4}{675}a^{15}-\frac{2}{225}a^{12}+\frac{14}{225}a^{10}-\frac{8}{135}a^{9}-\frac{34}{225}a^{8}+\frac{2}{75}a^{7}-\frac{8}{225}a^{6}+\frac{52}{225}a^{5}+\frac{41}{225}a^{4}-\frac{218}{675}a^{3}+\frac{68}{225}a^{2}-\frac{77}{225}a-\frac{41}{675}$, $\frac{1}{675}a^{19}-\frac{1}{675}a^{16}-\frac{2}{225}a^{15}-\frac{1}{225}a^{14}+\frac{2}{225}a^{13}-\frac{1}{225}a^{12}+\frac{2}{225}a^{11}+\frac{29}{675}a^{10}+\frac{1}{225}a^{9}-\frac{8}{75}a^{8}+\frac{1}{9}a^{7}-\frac{4}{75}a^{6}-\frac{97}{225}a^{5}-\frac{119}{675}a^{4}+\frac{104}{225}a^{3}-\frac{49}{225}a^{2}-\frac{34}{135}a+\frac{4}{25}$, $\frac{1}{675}a^{20}+\frac{1}{135}a^{16}-\frac{1}{135}a^{15}-\frac{1}{135}a^{14}-\frac{4}{675}a^{13}-\frac{1}{135}a^{12}+\frac{7}{675}a^{11}-\frac{44}{675}a^{10}+\frac{8}{675}a^{9}+\frac{1}{15}a^{8}-\frac{1}{225}a^{7}-\frac{2}{15}a^{6}+\frac{43}{675}a^{5}-\frac{17}{45}a^{4}+\frac{73}{225}a^{3}-\frac{277}{675}a^{2}+\frac{61}{135}a-\frac{119}{675}$, $\frac{1}{675}a^{21}+\frac{1}{135}a^{15}+\frac{2}{225}a^{14}+\frac{2}{675}a^{12}+\frac{2}{225}a^{11}+\frac{2}{75}a^{10}+\frac{16}{135}a^{9}-\frac{16}{225}a^{8}+\frac{2}{45}a^{7}-\frac{2}{675}a^{6}-\frac{4}{9}a^{5}+\frac{88}{225}a^{4}+\frac{248}{675}a^{3}-\frac{1}{3}a^{2}+\frac{112}{225}a-\frac{2}{27}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{45}a^{11}-\frac{11}{45}a^{9}+\frac{44}{45}a^{7}-\frac{77}{45}a^{5}+\frac{11}{9}a^{3}-\frac{11}{45}a-\frac{38}{45}$, $\frac{4}{675}a^{21}-\frac{13}{675}a^{20}-\frac{106}{675}a^{19}+\frac{49}{135}a^{18}+\frac{1181}{675}a^{17}-\frac{626}{225}a^{16}-\frac{7256}{675}a^{15}+\frac{7456}{675}a^{14}+\frac{1079}{27}a^{13}-\frac{70}{3}a^{12}-\frac{463}{5}a^{11}+\frac{13553}{675}a^{10}+\frac{90368}{675}a^{9}+\frac{953}{45}a^{8}-\frac{27431}{225}a^{7}-\frac{61616}{675}a^{6}+\frac{45689}{675}a^{5}+\frac{92033}{675}a^{4}+\frac{7234}{675}a^{3}-\frac{6106}{75}a^{2}-\frac{36794}{675}a-\frac{2317}{135}$, $\frac{8}{225}a^{21}+\frac{22}{675}a^{20}-\frac{32}{45}a^{19}-\frac{391}{675}a^{18}+\frac{154}{25}a^{17}+\frac{2951}{675}a^{16}-\frac{20407}{675}a^{15}-\frac{12299}{675}a^{14}+\frac{62189}{675}a^{13}+\frac{30676}{675}a^{12}-\frac{120758}{675}a^{11}-\frac{48299}{675}a^{10}+\frac{47902}{225}a^{9}+\frac{1309}{15}a^{8}-\frac{5689}{45}a^{7}-\frac{8974}{75}a^{6}+\frac{571}{675}a^{5}+\frac{3656}{25}a^{4}+\frac{8336}{675}a^{3}-\frac{62719}{675}a^{2}+\frac{13931}{675}a+\frac{244}{75}$, $\frac{2}{675}a^{21}-\frac{1}{675}a^{20}-\frac{16}{225}a^{19}+\frac{8}{225}a^{18}+\frac{493}{675}a^{17}-\frac{77}{225}a^{16}-\frac{2819}{675}a^{15}+\frac{361}{225}a^{14}+\frac{364}{25}a^{13}-\frac{2099}{675}a^{12}-\frac{21869}{675}a^{11}-\frac{44}{15}a^{10}+\frac{33118}{675}a^{9}+\frac{5984}{225}a^{8}-\frac{4339}{75}a^{7}-\frac{36664}{675}a^{6}+\frac{7531}{135}a^{5}+\frac{12697}{225}a^{4}-\frac{18143}{675}a^{3}-\frac{21052}{675}a^{2}-\frac{779}{75}a+\frac{1829}{675}$, $\frac{4}{675}a^{21}+\frac{19}{675}a^{20}-\frac{1}{9}a^{19}-\frac{23}{45}a^{18}+\frac{577}{675}a^{17}+\frac{2602}{675}a^{16}-\frac{2399}{675}a^{15}-\frac{10633}{675}a^{14}+\frac{6067}{675}a^{13}+\frac{25906}{675}a^{12}-\frac{3334}{225}a^{11}-\frac{39238}{675}a^{10}+\frac{2969}{225}a^{9}+\frac{12481}{225}a^{8}+\frac{736}{75}a^{7}-\frac{21971}{675}a^{6}-\frac{28589}{675}a^{5}+\frac{2369}{225}a^{4}+\frac{5029}{135}a^{3}-\frac{208}{75}a^{2}-\frac{5492}{675}a-\frac{1523}{225}$, $\frac{13}{135}a^{21}-\frac{62}{675}a^{20}-\frac{1334}{675}a^{19}+\frac{157}{75}a^{18}+\frac{11657}{675}a^{17}-\frac{13498}{675}a^{16}-\frac{56312}{675}a^{15}+\frac{4676}{45}a^{14}+\frac{54329}{225}a^{13}-\frac{215048}{675}a^{12}-\frac{285772}{675}a^{11}+\frac{386534}{675}a^{10}+\frac{300787}{675}a^{9}-\frac{114781}{225}a^{8}-\frac{84863}{225}a^{7}+\frac{1484}{675}a^{6}+\frac{75992}{135}a^{5}+\frac{192871}{675}a^{4}-\frac{384443}{675}a^{3}-\frac{901}{135}a^{2}+\frac{35296}{675}a+\frac{13762}{135}$, $\frac{1}{675}a^{21}-\frac{2}{675}a^{20}-\frac{26}{675}a^{19}+\frac{11}{135}a^{18}+\frac{278}{675}a^{17}-\frac{631}{675}a^{16}-\frac{319}{135}a^{15}+\frac{1337}{225}a^{14}+\frac{1753}{225}a^{13}-\frac{15688}{675}a^{12}-\frac{1871}{135}a^{11}+\frac{39311}{675}a^{10}+\frac{4681}{675}a^{9}-\frac{6949}{75}a^{8}+\frac{907}{45}a^{7}+\frac{58252}{675}a^{6}-\frac{24254}{675}a^{5}-\frac{25808}{675}a^{4}+\frac{2452}{225}a^{3}+\frac{1352}{135}a^{2}+\frac{6187}{675}a-\frac{6172}{675}$, $\frac{127}{675}a^{21}-\frac{16}{225}a^{20}-\frac{97}{25}a^{19}+\frac{964}{675}a^{18}+\frac{22906}{675}a^{17}-\frac{8047}{675}a^{16}-\frac{110419}{675}a^{15}+\frac{35728}{675}a^{14}+\frac{318827}{675}a^{13}-\frac{9911}{75}a^{12}-\frac{22402}{27}a^{11}+\frac{105583}{675}a^{10}+\frac{194978}{225}a^{9}+\frac{7636}{75}a^{8}-\frac{124682}{225}a^{7}-\frac{17783}{27}a^{6}+\frac{23594}{75}a^{5}+\frac{165853}{225}a^{4}-\frac{347}{5}a^{3}-\frac{71927}{675}a^{2}-\frac{12623}{135}a+\frac{1168}{75}$, $\frac{116}{675}a^{21}+\frac{61}{225}a^{20}-\frac{2222}{675}a^{19}-\frac{3533}{675}a^{18}+\frac{661}{25}a^{17}+\frac{28613}{675}a^{16}-\frac{579}{5}a^{15}-\frac{2807}{15}a^{14}+\frac{22616}{75}a^{13}+\frac{331264}{675}a^{12}-\frac{11952}{25}a^{11}-\frac{542557}{675}a^{10}+\frac{94696}{225}a^{9}+\frac{206359}{225}a^{8}+\frac{6871}{225}a^{7}-\frac{555331}{675}a^{6}-\frac{140341}{225}a^{5}+\frac{304504}{675}a^{4}+\frac{373952}{675}a^{3}-\frac{27011}{225}a^{2}-\frac{125402}{675}a-\frac{7982}{75}$, $\frac{146}{675}a^{21}-\frac{23}{135}a^{20}-\frac{1036}{225}a^{19}+\frac{821}{225}a^{18}+\frac{634}{15}a^{17}-\frac{22676}{675}a^{16}-\frac{49373}{225}a^{15}+\frac{4724}{27}a^{14}+\frac{480217}{675}a^{13}-\frac{129274}{225}a^{12}-\frac{1014607}{675}a^{11}+\frac{840212}{675}a^{10}+\frac{1423541}{675}a^{9}-\frac{43584}{25}a^{8}-\frac{456232}{225}a^{7}+\frac{953639}{675}a^{6}+\frac{979991}{675}a^{5}-\frac{8027}{15}a^{4}-\frac{484817}{675}a^{3}+\frac{3898}{675}a^{2}+\frac{133678}{675}a+\frac{60883}{675}$, $\frac{1298}{675}a^{21}-\frac{2227}{675}a^{20}-\frac{8039}{225}a^{19}+\frac{40619}{675}a^{18}+\frac{7579}{27}a^{17}-461a^{16}-\frac{821254}{675}a^{15}+\frac{48272}{25}a^{14}+\frac{715562}{225}a^{13}-\frac{3252722}{675}a^{12}-\frac{3467963}{675}a^{11}+\frac{1594744}{225}a^{10}+\frac{3666263}{675}a^{9}-\frac{1098026}{225}a^{8}-\frac{141561}{25}a^{7}-\frac{123119}{135}a^{6}+\frac{963442}{135}a^{5}+\frac{715229}{225}a^{4}-\frac{229016}{45}a^{3}-\frac{391201}{675}a^{2}+\frac{67823}{225}a+\frac{575068}{675}$
|
| |
| Regulator: | \( 40057640608100 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{10}\cdot 40057640608100 \cdot 1}{2\cdot\sqrt{322170665670052381217287483857714996337890625}}\cr\approx \mathstrut & 0.428026884288700 \end{aligned}\] (assuming GRH)
Galois group
$C_{11}^2:C_{20}$ (as 22T18):
| A solvable group of order 2420 |
| The 26 conjugacy class representatives for $C_{11}^2:C_{20}$ |
| Character table for $C_{11}^2:C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 siblings: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | 22.2.1502949932221620345262426910400390625.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20{,}\,{\href{/padicField/2.2.0.1}{2} }$ | $20{,}\,{\href{/padicField/3.2.0.1}{2} }$ | R | $20{,}\,{\href{/padicField/7.2.0.1}{2} }$ | R | $20{,}\,{\href{/padicField/13.2.0.1}{2} }$ | $20{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.10.0.1}{10} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{5}{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.10.0.1}{10} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.5.0.1}{5} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{5}{,}\,{\href{/padicField/43.2.0.1}{2} }$ | $20{,}\,{\href{/padicField/47.2.0.1}{2} }$ | $20{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.10.0.1}{10} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.5.4.15a1.4 | $x^{20} + 16 x^{16} + 12 x^{15} + 96 x^{12} + 144 x^{11} + 54 x^{10} + 256 x^{8} + 576 x^{7} + 432 x^{6} + 108 x^{5} + 256 x^{4} + 768 x^{3} + 864 x^{2} + 432 x + 86$ | $4$ | $5$ | $15$ | 20T1 | not computed | |
|
\(11\)
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |