Normalized defining polynomial
\( x^{22} - 22 x^{20} + 209 x^{18} - 1122 x^{16} + 3740 x^{14} - 8008 x^{12} - 121 x^{11} + 11011 x^{10} + 1331 x^{9} - 9438 x^{8} - 5324 x^{7} + 4719 x^{6} + 9317 x^{5} - 1210 x^{4} - 6655 x^{3} + 121 x^{2} + 1331 x + 1129 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(322170665670052381217287483857714996337890625=5^{16}\cdot 11^{32}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{45} a^{11} + \frac{4}{45} a^{9} - \frac{1}{45} a^{7} + \frac{13}{45} a^{5} + \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - \frac{11}{45} a - \frac{8}{45}$, $\frac{1}{45} a^{12} + \frac{4}{45} a^{10} - \frac{1}{45} a^{8} - \frac{2}{45} a^{6} + \frac{1}{3} a^{5} + \frac{2}{9} a^{4} - \frac{11}{45} a^{2} + \frac{22}{45} a - \frac{1}{3}$, $\frac{1}{45} a^{13} - \frac{2}{45} a^{9} + \frac{2}{45} a^{7} + \frac{2}{5} a^{5} + \frac{1}{5} a^{3} + \frac{22}{45} a^{2} + \frac{14}{45} a + \frac{2}{45}$, $\frac{1}{45} a^{14} - \frac{2}{45} a^{10} + \frac{2}{45} a^{8} + \frac{1}{15} a^{6} + \frac{1}{3} a^{5} + \frac{1}{5} a^{4} - \frac{8}{45} a^{3} + \frac{14}{45} a^{2} - \frac{13}{45} a - \frac{1}{3}$, $\frac{1}{45} a^{15} - \frac{1}{9} a^{9} + \frac{1}{45} a^{7} + \frac{1}{9} a^{5} - \frac{8}{45} a^{4} + \frac{4}{45} a^{3} + \frac{17}{45} a^{2} - \frac{7}{45} a - \frac{16}{45}$, $\frac{1}{45} a^{16} - \frac{1}{9} a^{10} + \frac{1}{45} a^{8} + \frac{1}{9} a^{6} - \frac{8}{45} a^{5} + \frac{4}{45} a^{4} + \frac{17}{45} a^{3} - \frac{7}{45} a^{2} - \frac{16}{45} a$, $\frac{1}{675} a^{17} - \frac{4}{675} a^{16} - \frac{2}{675} a^{15} + \frac{4}{675} a^{14} - \frac{1}{675} a^{13} + \frac{4}{675} a^{12} - \frac{7}{675} a^{11} + \frac{58}{675} a^{10} - \frac{17}{135} a^{9} - \frac{2}{45} a^{8} + \frac{2}{75} a^{7} - \frac{28}{225} a^{6} - \frac{22}{75} a^{5} + \frac{37}{75} a^{4} - \frac{103}{225} a^{3} + \frac{43}{675} a^{2} + \frac{182}{675} a - \frac{14}{675}$, $\frac{1}{675} a^{18} - \frac{1}{225} a^{16} - \frac{4}{675} a^{15} - \frac{2}{225} a^{12} + \frac{14}{225} a^{10} - \frac{8}{135} a^{9} - \frac{34}{225} a^{8} + \frac{2}{75} a^{7} - \frac{8}{225} a^{6} + \frac{52}{225} a^{5} + \frac{41}{225} a^{4} - \frac{218}{675} a^{3} + \frac{68}{225} a^{2} - \frac{77}{225} a - \frac{41}{675}$, $\frac{1}{675} a^{19} - \frac{1}{675} a^{16} - \frac{2}{225} a^{15} - \frac{1}{225} a^{14} + \frac{2}{225} a^{13} - \frac{1}{225} a^{12} + \frac{2}{225} a^{11} + \frac{29}{675} a^{10} + \frac{1}{225} a^{9} - \frac{8}{75} a^{8} + \frac{1}{9} a^{7} - \frac{4}{75} a^{6} - \frac{97}{225} a^{5} - \frac{119}{675} a^{4} + \frac{104}{225} a^{3} - \frac{49}{225} a^{2} - \frac{34}{135} a + \frac{4}{25}$, $\frac{1}{675} a^{20} + \frac{1}{135} a^{16} - \frac{1}{135} a^{15} - \frac{1}{135} a^{14} - \frac{4}{675} a^{13} - \frac{1}{135} a^{12} + \frac{7}{675} a^{11} - \frac{44}{675} a^{10} + \frac{8}{675} a^{9} + \frac{1}{15} a^{8} - \frac{1}{225} a^{7} - \frac{2}{15} a^{6} + \frac{43}{675} a^{5} - \frac{17}{45} a^{4} + \frac{73}{225} a^{3} - \frac{277}{675} a^{2} + \frac{61}{135} a - \frac{119}{675}$, $\frac{1}{675} a^{21} + \frac{1}{135} a^{15} + \frac{2}{225} a^{14} + \frac{2}{675} a^{12} + \frac{2}{225} a^{11} + \frac{2}{75} a^{10} + \frac{16}{135} a^{9} - \frac{16}{225} a^{8} + \frac{2}{45} a^{7} - \frac{2}{675} a^{6} - \frac{4}{9} a^{5} + \frac{88}{225} a^{4} + \frac{248}{675} a^{3} - \frac{1}{3} a^{2} + \frac{112}{225} a - \frac{2}{27}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40057640608100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2420 |
| The 26 conjugacy class representatives for t22n18 |
| Character table for t22n18 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | $20{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | $20{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.11.16.4 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $[8/5]_{5}$ |
| 11.11.16.4 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $[8/5]_{5}$ | |