Properties

Label 22.2.322...625.1
Degree $22$
Signature $[2, 10]$
Discriminant $3.222\times 10^{44}$
Root discriminant \(105.46\)
Ramified primes $5,11$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{11}^2:C_{20}$ (as 22T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^22 - 22*x^20 + 209*x^18 - 1122*x^16 + 3740*x^14 - 8008*x^12 - 121*x^11 + 11011*x^10 + 1331*x^9 - 9438*x^8 - 5324*x^7 + 4719*x^6 + 9317*x^5 - 1210*x^4 - 6655*x^3 + 121*x^2 + 1331*x + 1129)
 
Copy content gp:K = bnfinit(y^22 - 22*y^20 + 209*y^18 - 1122*y^16 + 3740*y^14 - 8008*y^12 - 121*y^11 + 11011*y^10 + 1331*y^9 - 9438*y^8 - 5324*y^7 + 4719*y^6 + 9317*y^5 - 1210*y^4 - 6655*y^3 + 121*y^2 + 1331*y + 1129, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 22*x^20 + 209*x^18 - 1122*x^16 + 3740*x^14 - 8008*x^12 - 121*x^11 + 11011*x^10 + 1331*x^9 - 9438*x^8 - 5324*x^7 + 4719*x^6 + 9317*x^5 - 1210*x^4 - 6655*x^3 + 121*x^2 + 1331*x + 1129);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^22 - 22*x^20 + 209*x^18 - 1122*x^16 + 3740*x^14 - 8008*x^12 - 121*x^11 + 11011*x^10 + 1331*x^9 - 9438*x^8 - 5324*x^7 + 4719*x^6 + 9317*x^5 - 1210*x^4 - 6655*x^3 + 121*x^2 + 1331*x + 1129)
 

\( x^{22} - 22 x^{20} + 209 x^{18} - 1122 x^{16} + 3740 x^{14} - 8008 x^{12} - 121 x^{11} + 11011 x^{10} + \cdots + 1129 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $22$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[2, 10]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(322170665670052381217287483857714996337890625\) \(\medspace = 5^{16}\cdot 11^{32}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(105.46\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $5^{3/4}11^{84/55}\approx 130.2321317975223$
Ramified primes:   \(5\), \(11\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{45}a^{11}+\frac{4}{45}a^{9}-\frac{1}{45}a^{7}+\frac{13}{45}a^{5}+\frac{2}{9}a^{3}-\frac{1}{3}a^{2}-\frac{11}{45}a-\frac{8}{45}$, $\frac{1}{45}a^{12}+\frac{4}{45}a^{10}-\frac{1}{45}a^{8}-\frac{2}{45}a^{6}+\frac{1}{3}a^{5}+\frac{2}{9}a^{4}-\frac{11}{45}a^{2}+\frac{22}{45}a-\frac{1}{3}$, $\frac{1}{45}a^{13}-\frac{2}{45}a^{9}+\frac{2}{45}a^{7}+\frac{2}{5}a^{5}+\frac{1}{5}a^{3}+\frac{22}{45}a^{2}+\frac{14}{45}a+\frac{2}{45}$, $\frac{1}{45}a^{14}-\frac{2}{45}a^{10}+\frac{2}{45}a^{8}+\frac{1}{15}a^{6}+\frac{1}{3}a^{5}+\frac{1}{5}a^{4}-\frac{8}{45}a^{3}+\frac{14}{45}a^{2}-\frac{13}{45}a-\frac{1}{3}$, $\frac{1}{45}a^{15}-\frac{1}{9}a^{9}+\frac{1}{45}a^{7}+\frac{1}{9}a^{5}-\frac{8}{45}a^{4}+\frac{4}{45}a^{3}+\frac{17}{45}a^{2}-\frac{7}{45}a-\frac{16}{45}$, $\frac{1}{45}a^{16}-\frac{1}{9}a^{10}+\frac{1}{45}a^{8}+\frac{1}{9}a^{6}-\frac{8}{45}a^{5}+\frac{4}{45}a^{4}+\frac{17}{45}a^{3}-\frac{7}{45}a^{2}-\frac{16}{45}a$, $\frac{1}{675}a^{17}-\frac{4}{675}a^{16}-\frac{2}{675}a^{15}+\frac{4}{675}a^{14}-\frac{1}{675}a^{13}+\frac{4}{675}a^{12}-\frac{7}{675}a^{11}+\frac{58}{675}a^{10}-\frac{17}{135}a^{9}-\frac{2}{45}a^{8}+\frac{2}{75}a^{7}-\frac{28}{225}a^{6}-\frac{22}{75}a^{5}+\frac{37}{75}a^{4}-\frac{103}{225}a^{3}+\frac{43}{675}a^{2}+\frac{182}{675}a-\frac{14}{675}$, $\frac{1}{675}a^{18}-\frac{1}{225}a^{16}-\frac{4}{675}a^{15}-\frac{2}{225}a^{12}+\frac{14}{225}a^{10}-\frac{8}{135}a^{9}-\frac{34}{225}a^{8}+\frac{2}{75}a^{7}-\frac{8}{225}a^{6}+\frac{52}{225}a^{5}+\frac{41}{225}a^{4}-\frac{218}{675}a^{3}+\frac{68}{225}a^{2}-\frac{77}{225}a-\frac{41}{675}$, $\frac{1}{675}a^{19}-\frac{1}{675}a^{16}-\frac{2}{225}a^{15}-\frac{1}{225}a^{14}+\frac{2}{225}a^{13}-\frac{1}{225}a^{12}+\frac{2}{225}a^{11}+\frac{29}{675}a^{10}+\frac{1}{225}a^{9}-\frac{8}{75}a^{8}+\frac{1}{9}a^{7}-\frac{4}{75}a^{6}-\frac{97}{225}a^{5}-\frac{119}{675}a^{4}+\frac{104}{225}a^{3}-\frac{49}{225}a^{2}-\frac{34}{135}a+\frac{4}{25}$, $\frac{1}{675}a^{20}+\frac{1}{135}a^{16}-\frac{1}{135}a^{15}-\frac{1}{135}a^{14}-\frac{4}{675}a^{13}-\frac{1}{135}a^{12}+\frac{7}{675}a^{11}-\frac{44}{675}a^{10}+\frac{8}{675}a^{9}+\frac{1}{15}a^{8}-\frac{1}{225}a^{7}-\frac{2}{15}a^{6}+\frac{43}{675}a^{5}-\frac{17}{45}a^{4}+\frac{73}{225}a^{3}-\frac{277}{675}a^{2}+\frac{61}{135}a-\frac{119}{675}$, $\frac{1}{675}a^{21}+\frac{1}{135}a^{15}+\frac{2}{225}a^{14}+\frac{2}{675}a^{12}+\frac{2}{225}a^{11}+\frac{2}{75}a^{10}+\frac{16}{135}a^{9}-\frac{16}{225}a^{8}+\frac{2}{45}a^{7}-\frac{2}{675}a^{6}-\frac{4}{9}a^{5}+\frac{88}{225}a^{4}+\frac{248}{675}a^{3}-\frac{1}{3}a^{2}+\frac{112}{225}a-\frac{2}{27}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{45}a^{11}-\frac{11}{45}a^{9}+\frac{44}{45}a^{7}-\frac{77}{45}a^{5}+\frac{11}{9}a^{3}-\frac{11}{45}a-\frac{38}{45}$, $\frac{4}{675}a^{21}-\frac{13}{675}a^{20}-\frac{106}{675}a^{19}+\frac{49}{135}a^{18}+\frac{1181}{675}a^{17}-\frac{626}{225}a^{16}-\frac{7256}{675}a^{15}+\frac{7456}{675}a^{14}+\frac{1079}{27}a^{13}-\frac{70}{3}a^{12}-\frac{463}{5}a^{11}+\frac{13553}{675}a^{10}+\frac{90368}{675}a^{9}+\frac{953}{45}a^{8}-\frac{27431}{225}a^{7}-\frac{61616}{675}a^{6}+\frac{45689}{675}a^{5}+\frac{92033}{675}a^{4}+\frac{7234}{675}a^{3}-\frac{6106}{75}a^{2}-\frac{36794}{675}a-\frac{2317}{135}$, $\frac{8}{225}a^{21}+\frac{22}{675}a^{20}-\frac{32}{45}a^{19}-\frac{391}{675}a^{18}+\frac{154}{25}a^{17}+\frac{2951}{675}a^{16}-\frac{20407}{675}a^{15}-\frac{12299}{675}a^{14}+\frac{62189}{675}a^{13}+\frac{30676}{675}a^{12}-\frac{120758}{675}a^{11}-\frac{48299}{675}a^{10}+\frac{47902}{225}a^{9}+\frac{1309}{15}a^{8}-\frac{5689}{45}a^{7}-\frac{8974}{75}a^{6}+\frac{571}{675}a^{5}+\frac{3656}{25}a^{4}+\frac{8336}{675}a^{3}-\frac{62719}{675}a^{2}+\frac{13931}{675}a+\frac{244}{75}$, $\frac{2}{675}a^{21}-\frac{1}{675}a^{20}-\frac{16}{225}a^{19}+\frac{8}{225}a^{18}+\frac{493}{675}a^{17}-\frac{77}{225}a^{16}-\frac{2819}{675}a^{15}+\frac{361}{225}a^{14}+\frac{364}{25}a^{13}-\frac{2099}{675}a^{12}-\frac{21869}{675}a^{11}-\frac{44}{15}a^{10}+\frac{33118}{675}a^{9}+\frac{5984}{225}a^{8}-\frac{4339}{75}a^{7}-\frac{36664}{675}a^{6}+\frac{7531}{135}a^{5}+\frac{12697}{225}a^{4}-\frac{18143}{675}a^{3}-\frac{21052}{675}a^{2}-\frac{779}{75}a+\frac{1829}{675}$, $\frac{4}{675}a^{21}+\frac{19}{675}a^{20}-\frac{1}{9}a^{19}-\frac{23}{45}a^{18}+\frac{577}{675}a^{17}+\frac{2602}{675}a^{16}-\frac{2399}{675}a^{15}-\frac{10633}{675}a^{14}+\frac{6067}{675}a^{13}+\frac{25906}{675}a^{12}-\frac{3334}{225}a^{11}-\frac{39238}{675}a^{10}+\frac{2969}{225}a^{9}+\frac{12481}{225}a^{8}+\frac{736}{75}a^{7}-\frac{21971}{675}a^{6}-\frac{28589}{675}a^{5}+\frac{2369}{225}a^{4}+\frac{5029}{135}a^{3}-\frac{208}{75}a^{2}-\frac{5492}{675}a-\frac{1523}{225}$, $\frac{13}{135}a^{21}-\frac{62}{675}a^{20}-\frac{1334}{675}a^{19}+\frac{157}{75}a^{18}+\frac{11657}{675}a^{17}-\frac{13498}{675}a^{16}-\frac{56312}{675}a^{15}+\frac{4676}{45}a^{14}+\frac{54329}{225}a^{13}-\frac{215048}{675}a^{12}-\frac{285772}{675}a^{11}+\frac{386534}{675}a^{10}+\frac{300787}{675}a^{9}-\frac{114781}{225}a^{8}-\frac{84863}{225}a^{7}+\frac{1484}{675}a^{6}+\frac{75992}{135}a^{5}+\frac{192871}{675}a^{4}-\frac{384443}{675}a^{3}-\frac{901}{135}a^{2}+\frac{35296}{675}a+\frac{13762}{135}$, $\frac{1}{675}a^{21}-\frac{2}{675}a^{20}-\frac{26}{675}a^{19}+\frac{11}{135}a^{18}+\frac{278}{675}a^{17}-\frac{631}{675}a^{16}-\frac{319}{135}a^{15}+\frac{1337}{225}a^{14}+\frac{1753}{225}a^{13}-\frac{15688}{675}a^{12}-\frac{1871}{135}a^{11}+\frac{39311}{675}a^{10}+\frac{4681}{675}a^{9}-\frac{6949}{75}a^{8}+\frac{907}{45}a^{7}+\frac{58252}{675}a^{6}-\frac{24254}{675}a^{5}-\frac{25808}{675}a^{4}+\frac{2452}{225}a^{3}+\frac{1352}{135}a^{2}+\frac{6187}{675}a-\frac{6172}{675}$, $\frac{127}{675}a^{21}-\frac{16}{225}a^{20}-\frac{97}{25}a^{19}+\frac{964}{675}a^{18}+\frac{22906}{675}a^{17}-\frac{8047}{675}a^{16}-\frac{110419}{675}a^{15}+\frac{35728}{675}a^{14}+\frac{318827}{675}a^{13}-\frac{9911}{75}a^{12}-\frac{22402}{27}a^{11}+\frac{105583}{675}a^{10}+\frac{194978}{225}a^{9}+\frac{7636}{75}a^{8}-\frac{124682}{225}a^{7}-\frac{17783}{27}a^{6}+\frac{23594}{75}a^{5}+\frac{165853}{225}a^{4}-\frac{347}{5}a^{3}-\frac{71927}{675}a^{2}-\frac{12623}{135}a+\frac{1168}{75}$, $\frac{116}{675}a^{21}+\frac{61}{225}a^{20}-\frac{2222}{675}a^{19}-\frac{3533}{675}a^{18}+\frac{661}{25}a^{17}+\frac{28613}{675}a^{16}-\frac{579}{5}a^{15}-\frac{2807}{15}a^{14}+\frac{22616}{75}a^{13}+\frac{331264}{675}a^{12}-\frac{11952}{25}a^{11}-\frac{542557}{675}a^{10}+\frac{94696}{225}a^{9}+\frac{206359}{225}a^{8}+\frac{6871}{225}a^{7}-\frac{555331}{675}a^{6}-\frac{140341}{225}a^{5}+\frac{304504}{675}a^{4}+\frac{373952}{675}a^{3}-\frac{27011}{225}a^{2}-\frac{125402}{675}a-\frac{7982}{75}$, $\frac{146}{675}a^{21}-\frac{23}{135}a^{20}-\frac{1036}{225}a^{19}+\frac{821}{225}a^{18}+\frac{634}{15}a^{17}-\frac{22676}{675}a^{16}-\frac{49373}{225}a^{15}+\frac{4724}{27}a^{14}+\frac{480217}{675}a^{13}-\frac{129274}{225}a^{12}-\frac{1014607}{675}a^{11}+\frac{840212}{675}a^{10}+\frac{1423541}{675}a^{9}-\frac{43584}{25}a^{8}-\frac{456232}{225}a^{7}+\frac{953639}{675}a^{6}+\frac{979991}{675}a^{5}-\frac{8027}{15}a^{4}-\frac{484817}{675}a^{3}+\frac{3898}{675}a^{2}+\frac{133678}{675}a+\frac{60883}{675}$, $\frac{1298}{675}a^{21}-\frac{2227}{675}a^{20}-\frac{8039}{225}a^{19}+\frac{40619}{675}a^{18}+\frac{7579}{27}a^{17}-461a^{16}-\frac{821254}{675}a^{15}+\frac{48272}{25}a^{14}+\frac{715562}{225}a^{13}-\frac{3252722}{675}a^{12}-\frac{3467963}{675}a^{11}+\frac{1594744}{225}a^{10}+\frac{3666263}{675}a^{9}-\frac{1098026}{225}a^{8}-\frac{141561}{25}a^{7}-\frac{123119}{135}a^{6}+\frac{963442}{135}a^{5}+\frac{715229}{225}a^{4}-\frac{229016}{45}a^{3}-\frac{391201}{675}a^{2}+\frac{67823}{225}a+\frac{575068}{675}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 40057640608100 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{10}\cdot 40057640608100 \cdot 1}{2\cdot\sqrt{322170665670052381217287483857714996337890625}}\cr\approx \mathstrut & 0.428026884288700 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^22 - 22*x^20 + 209*x^18 - 1122*x^16 + 3740*x^14 - 8008*x^12 - 121*x^11 + 11011*x^10 + 1331*x^9 - 9438*x^8 - 5324*x^7 + 4719*x^6 + 9317*x^5 - 1210*x^4 - 6655*x^3 + 121*x^2 + 1331*x + 1129) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^22 - 22*x^20 + 209*x^18 - 1122*x^16 + 3740*x^14 - 8008*x^12 - 121*x^11 + 11011*x^10 + 1331*x^9 - 9438*x^8 - 5324*x^7 + 4719*x^6 + 9317*x^5 - 1210*x^4 - 6655*x^3 + 121*x^2 + 1331*x + 1129, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 22*x^20 + 209*x^18 - 1122*x^16 + 3740*x^14 - 8008*x^12 - 121*x^11 + 11011*x^10 + 1331*x^9 - 9438*x^8 - 5324*x^7 + 4719*x^6 + 9317*x^5 - 1210*x^4 - 6655*x^3 + 121*x^2 + 1331*x + 1129); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^22 - 22*x^20 + 209*x^18 - 1122*x^16 + 3740*x^14 - 8008*x^12 - 121*x^11 + 11011*x^10 + 1331*x^9 - 9438*x^8 - 5324*x^7 + 4719*x^6 + 9317*x^5 - 1210*x^4 - 6655*x^3 + 121*x^2 + 1331*x + 1129); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{11}^2:C_{20}$ (as 22T18):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 2420
The 26 conjugacy class representatives for $C_{11}^2:C_{20}$
Character table for $C_{11}^2:C_{20}$

Intermediate fields

\(\Q(\sqrt{5}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 22 siblings: data not computed
Degree 44 siblings: data not computed
Minimal sibling: 22.2.1502949932221620345262426910400390625.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $20{,}\,{\href{/padicField/2.2.0.1}{2} }$ $20{,}\,{\href{/padicField/3.2.0.1}{2} }$ R $20{,}\,{\href{/padicField/7.2.0.1}{2} }$ R $20{,}\,{\href{/padicField/13.2.0.1}{2} }$ $20{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.10.0.1}{10} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{5}{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.10.0.1}{10} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.5.0.1}{5} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ $20{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.5.0.1}{5} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{5}{,}\,{\href{/padicField/43.2.0.1}{2} }$ $20{,}\,{\href{/padicField/47.2.0.1}{2} }$ $20{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.10.0.1}{10} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.1.2.1a1.1$x^{2} + 5$$2$$1$$1$$C_2$$$[\ ]_{2}$$
5.5.4.15a1.4$x^{20} + 16 x^{16} + 12 x^{15} + 96 x^{12} + 144 x^{11} + 54 x^{10} + 256 x^{8} + 576 x^{7} + 432 x^{6} + 108 x^{5} + 256 x^{4} + 768 x^{3} + 864 x^{2} + 432 x + 86$$4$$5$$15$20T1not computed
\(11\) Copy content Toggle raw display 11.1.11.16a2.1$x^{11} + 22 x^{6} + 11$$11$$1$$16$$C_{11}:C_5$$$[\frac{8}{5}]_{5}$$
11.1.11.16a2.1$x^{11} + 22 x^{6} + 11$$11$$1$$16$$C_{11}:C_5$$$[\frac{8}{5}]_{5}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)