Properties

Label 22.2.30904419560...5072.2
Degree $22$
Signature $[2, 10]$
Discriminant $2^{22}\cdot 74843^{9}$
Root discriminant $197.24$
Ramified primes $2, 74843$
Class number Not computed
Class group Not computed
Galois group 22T42

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-74843, 0, -18785593, 0, -510354432, 0, -1499852584, 0, -243780245, 0, 96833387, 0, 32293812, 0, 3891662, 0, 240973, 0, 8137, 0, 142, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 + 142*x^20 + 8137*x^18 + 240973*x^16 + 3891662*x^14 + 32293812*x^12 + 96833387*x^10 - 243780245*x^8 - 1499852584*x^6 - 510354432*x^4 - 18785593*x^2 - 74843)
 
gp: K = bnfinit(x^22 + 142*x^20 + 8137*x^18 + 240973*x^16 + 3891662*x^14 + 32293812*x^12 + 96833387*x^10 - 243780245*x^8 - 1499852584*x^6 - 510354432*x^4 - 18785593*x^2 - 74843, 1)
 

Normalized defining polynomial

\( x^{22} + 142 x^{20} + 8137 x^{18} + 240973 x^{16} + 3891662 x^{14} + 32293812 x^{12} + 96833387 x^{10} - 243780245 x^{8} - 1499852584 x^{6} - 510354432 x^{4} - 18785593 x^{2} - 74843 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(309044195601903421945287518629445365867259019395072=2^{22}\cdot 74843^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $197.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 74843$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{12} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{4593212593993806849408582697351262335654896021} a^{20} - \frac{60923767694702749887812564923945812949401923}{1531070864664602283136194232450420778551632007} a^{18} - \frac{115775085416012114138662930764716006263197627}{1531070864664602283136194232450420778551632007} a^{16} - \frac{159124207785397584940842523100669488447105289}{1531070864664602283136194232450420778551632007} a^{14} - \frac{29093991234905474696771268432937384935615773}{1531070864664602283136194232450420778551632007} a^{12} - \frac{262502127858046920153325989509248750616848500}{1531070864664602283136194232450420778551632007} a^{10} - \frac{562320278924959720250033891225696854256382080}{1531070864664602283136194232450420778551632007} a^{8} - \frac{1303612599754262055190212132203908125405190480}{4593212593993806849408582697351262335654896021} a^{6} + \frac{1701372108324268003131972577513621773161468543}{4593212593993806849408582697351262335654896021} a^{4} - \frac{1838190511171394602885822887447784147954131427}{4593212593993806849408582697351262335654896021} a^{2} + \frac{1040006197677408289318041087942725918904702964}{4593212593993806849408582697351262335654896021}$, $\frac{1}{4593212593993806849408582697351262335654896021} a^{21} - \frac{60923767694702749887812564923945812949401923}{1531070864664602283136194232450420778551632007} a^{19} - \frac{115775085416012114138662930764716006263197627}{1531070864664602283136194232450420778551632007} a^{17} - \frac{159124207785397584940842523100669488447105289}{1531070864664602283136194232450420778551632007} a^{15} - \frac{29093991234905474696771268432937384935615773}{1531070864664602283136194232450420778551632007} a^{13} - \frac{262502127858046920153325989509248750616848500}{1531070864664602283136194232450420778551632007} a^{11} - \frac{562320278924959720250033891225696854256382080}{1531070864664602283136194232450420778551632007} a^{9} - \frac{1303612599754262055190212132203908125405190480}{4593212593993806849408582697351262335654896021} a^{7} + \frac{1701372108324268003131972577513621773161468543}{4593212593993806849408582697351262335654896021} a^{5} - \frac{1838190511171394602885822887447784147954131427}{4593212593993806849408582697351262335654896021} a^{3} + \frac{1040006197677408289318041087942725918904702964}{4593212593993806849408582697351262335654896021} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

22T42:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 1351680
The 112 conjugacy class representatives for t22n42 are not computed
Character table for t22n42 is not computed

Intermediate fields

11.11.31376518243389673201.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 22 sibling: data not computed
Degree 44 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ $22$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
74843Data not computed