Normalized defining polynomial
\( x^{22} + 101 x^{20} + 4176 x^{18} + 91407 x^{16} + 1138432 x^{14} + 8015565 x^{12} + 29342566 x^{10} + 41164011 x^{8} - 37023993 x^{6} - 171064312 x^{4} - 170043296 x^{2} - 54560547 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(309044195601903421945287518629445365867259019395072=2^{22}\cdot 74843^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{13} - \frac{4}{9} a^{11} + \frac{4}{9} a^{9} - \frac{1}{9} a^{7} - \frac{1}{9} a^{5} + \frac{1}{3} a^{3} + \frac{4}{9} a$, $\frac{1}{9} a^{18} - \frac{1}{9} a^{14} - \frac{4}{9} a^{12} + \frac{4}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{9} a^{6} + \frac{1}{3} a^{4} + \frac{4}{9} a^{2}$, $\frac{1}{27} a^{19} + \frac{1}{27} a^{17} - \frac{1}{27} a^{15} + \frac{4}{27} a^{13} + \frac{1}{3} a^{11} + \frac{4}{9} a^{9} + \frac{7}{27} a^{7} + \frac{2}{27} a^{5} - \frac{11}{27} a^{3} + \frac{13}{27} a$, $\frac{1}{87806100164706148480292878185986325} a^{20} - \frac{2567194969216815354996805527315176}{87806100164706148480292878185986325} a^{18} + \frac{10773216263512751706003051878874578}{87806100164706148480292878185986325} a^{16} + \frac{42389800656052373108366949518991076}{87806100164706148480292878185986325} a^{14} - \frac{2012852561089253956726996120341188}{5853740010980409898686191879065755} a^{12} + \frac{1732812135364412392840600479900352}{5853740010980409898686191879065755} a^{10} - \frac{25818184929856326792425487817723094}{87806100164706148480292878185986325} a^{8} - \frac{25293706384558641109918362268587901}{87806100164706148480292878185986325} a^{6} + \frac{5877478411653080433521432454029134}{87806100164706148480292878185986325} a^{4} - \frac{2026269523168276777858205167896256}{17561220032941229696058575637197265} a^{2} - \frac{1021811138719455754189384888741918}{3252077783878005499270106599480975}$, $\frac{1}{87806100164706148480292878185986325} a^{21} + \frac{684882814661190144273301072165799}{87806100164706148480292878185986325} a^{19} + \frac{158113359102101507683808839996764}{3252077783878005499270106599480975} a^{17} + \frac{3289674272424106038555294508060442}{29268700054902049493430959395328775} a^{15} + \frac{4368091225141855727483352757315556}{17561220032941229696058575637197265} a^{13} + \frac{47997891312578910348061982234218}{650415556775601099854021319896195} a^{11} + \frac{3450515125045722701005471577605681}{87806100164706148480292878185986325} a^{9} + \frac{12165257169707821125404554373850208}{29268700054902049493430959395328775} a^{7} + \frac{2459763036782567547763551716826001}{9756233351634016497810319798442925} a^{5} + \frac{8380379385241340819806135950442864}{17561220032941229696058575637197265} a^{3} + \frac{34200577148256799123018633394106739}{87806100164706148480292878185986325} a$
Class group and class number
$C_{90}$, which has order $90$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 282612499701000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||