Normalized defining polynomial
\( x^{22} + 78 x^{20} + 2355 x^{18} + 30360 x^{16} + 156915 x^{14} + 293802 x^{12} + 1279641 x^{10} + 795000 x^{8} - 582480 x^{6} + 170360 x^{4} + 14292 x^{2} - 5184 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2754990144000000000000000000000000000000000000=2^{42}\cdot 3^{16}\cdot 5^{36}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{3}{8} a^{8} - \frac{1}{2} a^{7} + \frac{1}{8} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{3}{8} a^{9} - \frac{1}{2} a^{8} + \frac{1}{8} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{14} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{15} + \frac{1}{4} a^{9} - \frac{1}{8} a^{7} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{10} + \frac{3}{8} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{48} a^{17} - \frac{1}{24} a^{15} - \frac{1}{24} a^{13} - \frac{1}{24} a^{11} + \frac{7}{48} a^{9} + \frac{5}{24} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{12} a^{3} + \frac{1}{12} a$, $\frac{1}{48} a^{18} - \frac{1}{24} a^{16} - \frac{1}{24} a^{14} - \frac{1}{24} a^{12} + \frac{7}{48} a^{10} + \frac{5}{24} a^{8} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{12} a^{4} + \frac{1}{12} a^{2}$, $\frac{1}{48} a^{19} - \frac{1}{16} a^{11} + \frac{3}{8} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{6} a$, $\frac{1}{221845315008806362876947537489840} a^{20} - \frac{95703632835383157415764561335}{14789687667253757525129835832656} a^{18} + \frac{116754855840791595961316686831}{3697421916813439381282458958164} a^{16} + \frac{47702607271109363742117124855}{1848710958406719690641229479082} a^{14} - \frac{196919000774167991590168728945}{4929895889084585841709945277552} a^{12} - \frac{14504259009719491175976730472911}{73948438336268787625649179163280} a^{10} - \frac{96492476711149411771723334513}{1848710958406719690641229479082} a^{8} - \frac{2832712848077798843012630420039}{7394843833626878762564917916328} a^{6} - \frac{1}{2} a^{5} - \frac{137427236745619792575121630125}{1232473972271146460427486319388} a^{4} - \frac{1}{2} a^{3} - \frac{2317391182356417677596642259713}{5546132875220159071923688437246} a^{2} + \frac{123722981429158980511306968358}{1540592465338933075534357899235}$, $\frac{1}{1331071890052838177261685224939040} a^{21} + \frac{414325923183988343952425089103}{44369063001761272575389507497968} a^{19} - \frac{457336055840193461475347992217}{88738126003522545150779014995936} a^{17} + \frac{47702607271109363742117124855}{11092265750440318143847376874492} a^{15} - \frac{65639666924722663863389576315}{9859791778169171683419890555104} a^{13} - \frac{4941240806851345974686828387603}{221845315008806362876947537489840} a^{11} - \frac{1}{4} a^{10} + \frac{26034369083208240220124040770585}{88738126003522545150779014995936} a^{9} - \frac{1}{4} a^{8} - \frac{2802889642843939189487237319331}{22184531500880636287694753748984} a^{7} - \frac{1}{4} a^{6} - \frac{242541139529641610711413820729}{616236986135573230213743159694} a^{5} - \frac{1}{4} a^{4} - \frac{4045680842601703839351465838207}{8319199312830238607885532655869} a^{3} - \frac{1}{2} a^{2} - \frac{4126885470300163304557845824273}{36974219168134393812824589581640} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4373557224090000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 8110080 |
| The 52 conjugacy class representatives for t22n43 are not computed |
| Character table for t22n43 is not computed |
Intermediate fields
| 11.3.6561000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $16{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.6.10.4 | $x^{6} + 2 x^{5} + 2 x^{4} + 6$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.10.4 | $x^{6} + 2 x^{5} + 2 x^{4} + 6$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.8.22.144 | $x^{8} + 4 x^{7} + 4 x^{4} + 12 x^{2} + 10$ | $8$ | $1$ | $22$ | $Q_8:S_4$ | $[4/3, 4/3, 8/3, 8/3, 7/2]_{3}^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.10.18.2 | $x^{10} + 10 x^{8} + 40 x^{6} + 60 x^{5} + 80 x^{4} - 75 x^{3} + 80 x^{2} + 75 x + 57$ | $5$ | $2$ | $18$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ |