Normalized defining polynomial
\( x^{22} - 8 x^{21} + 33 x^{20} - 200 x^{19} + 985 x^{18} - 3690 x^{17} + 12030 x^{16} - 28920 x^{15} + 43605 x^{14} + 157400 x^{13} - 1631281 x^{12} + 8675988 x^{11} - 35721373 x^{10} + 126155450 x^{9} - 382410030 x^{8} + 1013263932 x^{7} - 2350280781 x^{6} + 4622082636 x^{5} - 7118046395 x^{4} + 7748137180 x^{3} - 4988648001 x^{2} + 1044563818 x + 545722732 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1937102445000000000000000000000000000000000000=2^{36}\cdot 3^{18}\cdot 5^{37}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $114.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{12} a^{16} + \frac{1}{12} a^{15} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} + \frac{1}{12} a^{10} + \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{6} a^{7} + \frac{1}{12} a^{6} + \frac{1}{4} a^{5} + \frac{1}{6} a^{4} + \frac{5}{12} a^{3} + \frac{1}{4} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{12} a^{17} - \frac{1}{12} a^{15} - \frac{1}{12} a^{14} + \frac{1}{12} a^{12} + \frac{1}{12} a^{11} + \frac{1}{6} a^{9} + \frac{1}{12} a^{8} - \frac{1}{4} a^{7} - \frac{1}{3} a^{6} + \frac{5}{12} a^{5} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3} + \frac{1}{12} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{72} a^{18} - \frac{1}{12} a^{15} - \frac{1}{12} a^{14} - \frac{1}{6} a^{13} - \frac{1}{6} a^{12} - \frac{1}{12} a^{11} + \frac{5}{24} a^{10} - \frac{5}{36} a^{9} - \frac{1}{6} a^{8} + \frac{1}{12} a^{7} - \frac{5}{12} a^{6} - \frac{5}{12} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{7}{24} a^{2} - \frac{5}{12} a + \frac{1}{18}$, $\frac{1}{72} a^{19} + \frac{1}{12} a^{14} - \frac{1}{4} a^{13} + \frac{1}{12} a^{12} + \frac{5}{24} a^{11} - \frac{1}{18} a^{10} - \frac{1}{12} a^{9} + \frac{1}{12} a^{8} - \frac{1}{12} a^{7} + \frac{1}{6} a^{6} + \frac{1}{12} a^{5} + \frac{1}{12} a^{4} - \frac{7}{24} a^{3} + \frac{1}{12} a^{2} + \frac{7}{18} a + \frac{1}{3}$, $\frac{1}{432} a^{20} - \frac{1}{432} a^{19} + \frac{1}{432} a^{18} + \frac{1}{36} a^{17} + \frac{1}{72} a^{15} - \frac{1}{18} a^{14} + \frac{5}{72} a^{13} + \frac{1}{16} a^{12} + \frac{23}{432} a^{11} - \frac{23}{432} a^{10} + \frac{11}{108} a^{9} - \frac{17}{72} a^{8} - \frac{1}{36} a^{7} - \frac{4}{9} a^{6} - \frac{11}{36} a^{5} - \frac{43}{144} a^{4} - \frac{49}{144} a^{3} + \frac{37}{432} a^{2} - \frac{89}{216} a + \frac{19}{108}$, $\frac{1}{1936114769855546512782313507130970581831843937309613988151354271368754501229305488} a^{21} - \frac{323066775832888348881746356577296322731705645218378830059339158378041621951125}{645371589951848837594104502376990193943947979103204662717118090456251500409768496} a^{20} - \frac{333808274111076129476900926575076299298282204165268802716486440840047414684337}{645371589951848837594104502376990193943947979103204662717118090456251500409768496} a^{19} + \frac{772193510001699691567957061145465131983231831120665131053261156857843913672702}{121007173115971657048894594195685661364490246081850874259459641960547156326831593} a^{18} + \frac{1305902863456956215771646573299614158161490924692944166093965718785812264891539}{80671448743981104699263062797123774242993497387900582839639761307031437551221062} a^{17} - \frac{8029975694391287538762822058336209461109198997409435088385449759057416050621271}{322685794975924418797052251188495096971973989551602331358559045228125750204884248} a^{16} + \frac{340821067167091008466676719397588138531633873030486216949939003341407646768122}{13445241457330184116543843799520629040498916231316763806606626884505239591870177} a^{15} - \frac{2698157207192297037680237172899956096886095116282247800082076416130656769389409}{322685794975924418797052251188495096971973989551602331358559045228125750204884248} a^{14} + \frac{80798664216897813310532155696999331386711542209571564068738183586005373648684529}{645371589951848837594104502376990193943947979103204662717118090456251500409768496} a^{13} - \frac{220051780482681004851128096571347849107223024998171352582782310457981006264196939}{1936114769855546512782313507130970581831843937309613988151354271368754501229305488} a^{12} + \frac{115836052465634963678966395319561138688938758454009423579619625898687311982380783}{645371589951848837594104502376990193943947979103204662717118090456251500409768496} a^{11} - \frac{36007266463931443677878578689387078760983927741200935552900218806198328438897553}{161342897487962209398526125594247548485986994775801165679279522614062875102442124} a^{10} + \frac{203838976336341197610062430324767528636434190660501310522846175122146693643501457}{968057384927773256391156753565485290915921968654806994075677135684377250614652744} a^{9} + \frac{12481930783827111404115375392134725916107203090489728572176988139409824119900365}{80671448743981104699263062797123774242993497387900582839639761307031437551221062} a^{8} - \frac{18826530006900766524516305448933662799627871288554080913677483732933361958279861}{80671448743981104699263062797123774242993497387900582839639761307031437551221062} a^{7} + \frac{3622994196162043695711353735151747432310566472727186957758213923554517591498677}{8963494304886789411029229199680419360332610820877842537737751256336826394580118} a^{6} - \frac{34175033258797710992719770516291253125812666462493784391085592322764921502801513}{215123863317282945864701500792330064647982659701068220905706030152083833469922832} a^{5} + \frac{224014589111249064036863587808407056764975008369758725944547790563982287167892113}{645371589951848837594104502376990193943947979103204662717118090456251500409768496} a^{4} - \frac{612091415362036262006897875231899548345965413294315900684147993946281606074760527}{1936114769855546512782313507130970581831843937309613988151354271368754501229305488} a^{3} - \frac{13689588435939309140787939179792466149073524831298420275027455648775640522123609}{35853977219547157644116916798721677441330443283511370150951005025347305578320472} a^{2} - \frac{64703762082606159623760822105931407146568408533252990607977484751767255910737287}{161342897487962209398526125594247548485986994775801165679279522614062875102442124} a - \frac{45278438084190069287722148009197257703726075390065867712297579985953251281002775}{121007173115971657048894594195685661364490246081850874259459641960547156326831593}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 345110169299000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.3.6561000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | $22$ | $16{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.8.16.9 | $x^{8} + 2 x^{4} + 8 x + 12$ | $4$ | $2$ | $16$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.20.34 | $x^{12} + 14 x^{10} + 16 x^{8} - 8 x^{6} - 8 x^{4} + 16 x^{2} + 16$ | $6$ | $2$ | $20$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.10.19.3 | $x^{10} + 30$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |
| 5.10.18.2 | $x^{10} + 10 x^{8} + 40 x^{6} + 60 x^{5} + 80 x^{4} - 75 x^{3} + 80 x^{2} + 75 x + 57$ | $5$ | $2$ | $18$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ | |