Normalized defining polynomial
\( x^{22} - 5 x^{21} - 29 x^{20} + 360 x^{19} - 990 x^{18} + 1875 x^{17} - 5670 x^{16} + 22785 x^{15} - 97815 x^{14} + 308825 x^{13} - 409888 x^{12} - 264895 x^{11} + 1426017 x^{10} - 79980 x^{9} - 3413490 x^{8} + 3818490 x^{7} + 4882185 x^{6} + 58738635 x^{5} + 99523260 x^{4} - 161912160 x^{3} - 446673024 x^{2} - 327824640 x - 82658304 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1893186812454544879163274207128906250000000000=2^{10}\cdot 3^{20}\cdot 5^{20}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $114.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6}$, $\frac{1}{24} a^{18} + \frac{1}{8} a^{17} + \frac{1}{8} a^{16} + \frac{1}{3} a^{15} - \frac{1}{4} a^{14} + \frac{1}{8} a^{13} - \frac{1}{4} a^{12} + \frac{3}{8} a^{11} + \frac{3}{8} a^{10} - \frac{7}{24} a^{9} + \frac{3}{8} a^{7} + \frac{1}{24} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{3}{8} a^{2} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{192} a^{19} - \frac{1}{192} a^{18} - \frac{17}{192} a^{17} + \frac{7}{16} a^{16} - \frac{47}{96} a^{15} + \frac{9}{64} a^{14} - \frac{15}{32} a^{13} + \frac{3}{64} a^{12} + \frac{15}{64} a^{11} + \frac{29}{192} a^{10} - \frac{23}{48} a^{9} - \frac{31}{192} a^{8} - \frac{9}{64} a^{7} - \frac{1}{24} a^{6} - \frac{11}{32} a^{5} - \frac{13}{32} a^{4} - \frac{5}{64} a^{3} - \frac{27}{64} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{1536} a^{20} + \frac{1}{512} a^{19} - \frac{7}{512} a^{18} + \frac{3}{32} a^{17} - \frac{7}{768} a^{16} - \frac{29}{1536} a^{15} - \frac{93}{256} a^{14} - \frac{53}{512} a^{13} + \frac{155}{512} a^{12} + \frac{209}{1536} a^{11} + \frac{25}{64} a^{10} + \frac{251}{512} a^{9} + \frac{35}{512} a^{8} - \frac{13}{384} a^{7} - \frac{17}{768} a^{6} + \frac{7}{256} a^{5} + \frac{211}{512} a^{4} + \frac{81}{512} a^{3} + \frac{59}{128} a^{2} - \frac{13}{32} a - \frac{3}{8}$, $\frac{1}{5732024186032757422846197978985016855944476218738936321349883890265407610439323995556786176} a^{21} + \frac{377488395864173986185124475325384751013882500037613940805993962289289874930021904570517}{1910674728677585807615399326328338951981492072912978773783294630088469203479774665185595392} a^{20} - \frac{3925971884723770203471897140903890988677059954015853606709295473541904146183890891384459}{1910674728677585807615399326328338951981492072912978773783294630088469203479774665185595392} a^{19} + \frac{8276935157245189181340266701225495662612926837592985922700358580715647370354478813409811}{477668682169396451903849831582084737995373018228244693445823657522117300869943666296398848} a^{18} + \frac{346975546115964984244703409749952670078714029128191371506880526669743679758246264756648505}{2866012093016378711423098989492508427972238109369468160674941945132703805219661997778393088} a^{17} + \frac{1021868397212134911205158065734390375525185858530087706048291852650128185629931088431954587}{5732024186032757422846197978985016855944476218738936321349883890265407610439323995556786176} a^{16} + \frac{37901607805870592689514603965046783548061003683127681399217364873038206343600072830895875}{2866012093016378711423098989492508427972238109369468160674941945132703805219661997778393088} a^{15} + \frac{259509429883986511442056942930344927387202398169350796899324444004340561385007257272859763}{1910674728677585807615399326328338951981492072912978773783294630088469203479774665185595392} a^{14} - \frac{121482428414692055272481091207497660288140601459844112620546038877606495741848583257749201}{1910674728677585807615399326328338951981492072912978773783294630088469203479774665185595392} a^{13} + \frac{1100157595735779764227202447207881645721929412970362543607026593473754380666568925156460173}{5732024186032757422846197978985016855944476218738936321349883890265407610439323995556786176} a^{12} - \frac{4698353084599097961003608366889835744404221256861034049044401983751890317198823379103631}{68238383167056635986264261654583533999339002604034956206546236788873900124277666613771264} a^{11} - \frac{614271539313611641458772158209864666564700272121919842878743678918236195213425997303902053}{1910674728677585807615399326328338951981492072912978773783294630088469203479774665185595392} a^{10} + \frac{437700324446972677273455720139757824948837717552656194807814597792206303020800258766637687}{1910674728677585807615399326328338951981492072912978773783294630088469203479774665185595392} a^{9} + \frac{253702110648657352672094817326474645053353813498360055624584531393179959047610816635404837}{716503023254094677855774747373127106993059527342367040168735486283175951304915499444598272} a^{8} - \frac{841980756361514650795125856139041751932798993867862737397782712361187025977038702861660169}{2866012093016378711423098989492508427972238109369468160674941945132703805219661997778393088} a^{7} - \frac{158127777137347859533010292346019302076498566820337799883482912397394881497674013996874657}{409430299002339815917585569927501203996034015624209737239277420733243400745665999682627584} a^{6} - \frac{12476373779272361139048625557073656728244070341040751912467449699677699241806296450464563}{272953532668226543945057046618334135997356010416139824826184947155495600497110666455085056} a^{5} - \frac{662769132062344277804461384144638347074491438579083863276630918498605155393329949797594683}{1910674728677585807615399326328338951981492072912978773783294630088469203479774665185595392} a^{4} + \frac{62981772370285876915397399466662447106382869056925632078486332636446888898632795149134117}{238834341084698225951924915791042368997686509114122346722911828761058650434971833148199424} a^{3} + \frac{11150556151956460490119508756147982978037866097588593215540080208749233579534191535871443}{29854292635587278243990614473880296124710813639265293340363978595132331304371479143524928} a^{2} - \frac{525516439643842779190623878978026847602064289361638821163577996388091974895186721486819}{14927146317793639121995307236940148062355406819632646670181989297566165652185739571762464} a + \frac{1503567585118900347469441247248808267188232609091969317382932285471895164774804900035199}{7463573158896819560997653618470074031177703409816323335090994648783082826092869785881232}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94338237971700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 56320 |
| The 40 conjugacy class representatives for t22n33 |
| Character table for t22n33 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |