Normalized defining polynomial
\( x^{22} - 2 x^{21} + 16 x^{20} + 12 x^{19} - 55 x^{18} + 482 x^{17} - 2477 x^{16} + 1764 x^{15} - 26905 x^{14} - 8523 x^{13} - 179279 x^{12} - 129306 x^{11} - 552925 x^{10} - 120476 x^{9} - 752931 x^{8} + 162572 x^{7} - 958963 x^{6} + 202039 x^{5} - 1129686 x^{4} + 1534908 x^{3} - 1835434 x^{2} + 973620 x - 247433 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18498813244074511635519301831008736129=23^{20}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{21} + \frac{114881474888945617292163198801039950553751116468716932636684126762749474354121}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{20} + \frac{120202115518455865232070576156993643142033493118722162824802361126936080727788}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{19} - \frac{39935331817423353984497367525644778363733588132561457255962058652256226785467}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{18} + \frac{49965874534678041205629678770404838344256528816915368004808336893179612285549}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{17} + \frac{126812197253061594246668142889787365536447216278469757318965512653457700660202}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{16} - \frac{92588265354863346879778133554169935218227244533112017706427032376877545943846}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{15} + \frac{58764267234696177711041347053006275521080806188744641533541130749545666496186}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{14} + \frac{55195292335116604110108063643961062666626823871041871625201741737321888052105}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{13} + \frac{101793557327691316620708997957874665191634870803918383480601431848840877341108}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{12} + \frac{2507964495266438626876061746987756661794165608633179571608810838610100741440}{6843662610073325672776410479260293759492682277528503817517332084308521480887} a^{11} + \frac{151811306790579599569737235994830419969219565935527009807190860915492079887949}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{10} + \frac{48027589876152968457976909231260480375571148072796922562041965504231329569888}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{9} + \frac{83031783874116421641163453568192591157857205043513072097060726959831806189417}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{8} - \frac{46002444551446989873051175906746162963328552934113764378410955538137468441351}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{7} - \frac{32203565652812576800859546577676335378432040547452948146089429273633707718811}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{6} - \frac{45796933806153844925700135924900371488952724480047996940412935651906088839022}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{5} - \frac{48812769328820757231558926656741912499833192832307614018328214883550514692923}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{4} - \frac{130037422488317493959017566917167065087161938343950040521924538094243975570527}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{3} + \frac{95909077737065002830335604805004067006725940730535415041548830014843473234583}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a^{2} + \frac{25597895948535681346082039519187523671436870523259075576618861697339864957256}{321652142673446306620491292525233806696156067043839679423314607962500509601689} a - \frac{11962714409869806732367617367432720739799561859476340679562050267819524050187}{321652142673446306620491292525233806696156067043839679423314607962500509601689}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 113968730.636 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11264 |
| The 104 conjugacy class representatives for t22n23 are not computed |
| Character table for t22n23 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |
| 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ | |
| 47 | Data not computed | ||||||