Normalized defining polynomial
\( x^{22} - 22 x^{20} + 209 x^{18} - 1122 x^{16} + 3740 x^{14} - 8008 x^{12} - 1129 x^{11} + 11011 x^{10} + 12419 x^{9} - 9438 x^{8} - 49676 x^{7} + 4719 x^{6} + 86933 x^{5} - 1210 x^{4} - 62095 x^{3} + 121 x^{2} + 12419 x + 12379 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1502949932221620345262426910400390625=5^{16}\cdot 11^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{495} a^{11} - \frac{1}{45} a^{9} + \frac{4}{45} a^{7} - \frac{7}{45} a^{5} + \frac{1}{9} a^{3} - \frac{1}{45} a + \frac{178}{495}$, $\frac{1}{495} a^{12} - \frac{1}{45} a^{10} + \frac{4}{45} a^{8} - \frac{7}{45} a^{6} + \frac{1}{9} a^{4} - \frac{1}{45} a^{2} + \frac{178}{495} a$, $\frac{1}{495} a^{13} - \frac{7}{45} a^{9} + \frac{7}{45} a^{7} + \frac{1}{15} a^{5} - \frac{1}{3} a^{4} - \frac{2}{15} a^{3} - \frac{152}{495} a^{2} + \frac{19}{45} a + \frac{13}{45}$, $\frac{1}{495} a^{14} - \frac{7}{45} a^{10} + \frac{7}{45} a^{8} + \frac{1}{15} a^{6} - \frac{1}{3} a^{5} - \frac{2}{15} a^{4} - \frac{152}{495} a^{3} + \frac{19}{45} a^{2} + \frac{13}{45} a$, $\frac{1}{495} a^{15} + \frac{1}{9} a^{9} - \frac{4}{45} a^{7} - \frac{4}{9} a^{5} - \frac{152}{495} a^{4} - \frac{16}{45} a^{3} - \frac{17}{45} a^{2} - \frac{17}{45} a + \frac{16}{45}$, $\frac{1}{5445} a^{16} - \frac{1}{5445} a^{15} - \frac{4}{5445} a^{14} + \frac{1}{1815} a^{13} + \frac{1}{1815} a^{12} - \frac{1}{5445} a^{11} - \frac{1}{33} a^{10} + \frac{4}{99} a^{9} - \frac{13}{99} a^{8} + \frac{4}{55} a^{7} - \frac{53}{495} a^{6} - \frac{1241}{5445} a^{5} + \frac{49}{363} a^{4} + \frac{2159}{5445} a^{3} - \frac{133}{1089} a^{2} + \frac{266}{1815} a - \frac{116}{363}$, $\frac{1}{81675} a^{17} - \frac{1}{81675} a^{16} + \frac{73}{81675} a^{15} - \frac{74}{81675} a^{14} + \frac{14}{81675} a^{13} + \frac{76}{81675} a^{12} - \frac{2}{7425} a^{11} + \frac{482}{7425} a^{10} - \frac{29}{297} a^{9} - \frac{13}{495} a^{8} - \frac{289}{2475} a^{7} - \frac{212}{27225} a^{6} + \frac{12829}{27225} a^{5} + \frac{10814}{27225} a^{4} - \frac{4508}{27225} a^{3} - \frac{3173}{81675} a^{2} - \frac{39943}{81675} a + \frac{2699}{7425}$, $\frac{1}{81675} a^{18} - \frac{1}{27225} a^{16} + \frac{74}{81675} a^{15} + \frac{1}{1089} a^{14} + \frac{2}{5445} a^{13} - \frac{2}{27225} a^{12} + \frac{1}{1089} a^{11} - \frac{67}{825} a^{10} - \frac{14}{135} a^{9} + \frac{281}{2475} a^{8} + \frac{1418}{9075} a^{7} + \frac{272}{2475} a^{6} + \frac{1167}{3025} a^{5} + \frac{12736}{27225} a^{4} + \frac{7993}{81675} a^{3} + \frac{1002}{3025} a^{2} + \frac{337}{27225} a + \frac{33469}{81675}$, $\frac{1}{898425} a^{19} + \frac{1}{179685} a^{18} + \frac{2}{898425} a^{17} - \frac{4}{99825} a^{16} + \frac{49}{59895} a^{15} - \frac{152}{179685} a^{14} + \frac{769}{898425} a^{13} - \frac{68}{179685} a^{12} + \frac{487}{898425} a^{11} + \frac{1216}{16335} a^{10} - \frac{9422}{81675} a^{9} + \frac{9754}{299475} a^{8} + \frac{10402}{299475} a^{7} - \frac{39782}{299475} a^{6} - \frac{34603}{99825} a^{5} - \frac{39197}{898425} a^{4} - \frac{298861}{898425} a^{3} + \frac{339821}{898425} a^{2} + \frac{50954}{898425} a + \frac{69959}{179685}$, $\frac{1}{898425} a^{20} - \frac{1}{898425} a^{18} - \frac{2}{898425} a^{17} - \frac{4}{179685} a^{16} - \frac{13}{19965} a^{15} + \frac{818}{898425} a^{14} + \frac{61}{898425} a^{13} - \frac{706}{898425} a^{12} + \frac{68}{99825} a^{11} - \frac{997}{16335} a^{10} + \frac{28382}{898425} a^{9} + \frac{164}{27225} a^{8} - \frac{1627}{11979} a^{7} + \frac{45722}{299475} a^{6} + \frac{356404}{898425} a^{5} - \frac{3776}{33275} a^{4} + \frac{421451}{898425} a^{3} - \frac{8929}{59895} a^{2} + \frac{10786}{35937} a - \frac{158441}{898425}$, $\frac{1}{898425} a^{21} + \frac{1}{299475} a^{18} + \frac{4}{898425} a^{17} + \frac{17}{898425} a^{16} + \frac{76}{99825} a^{15} + \frac{478}{898425} a^{14} + \frac{536}{898425} a^{13} + \frac{98}{299475} a^{12} + \frac{773}{898425} a^{11} + \frac{23146}{898425} a^{10} - \frac{1973}{16335} a^{9} - \frac{1601}{27225} a^{8} - \frac{19864}{299475} a^{7} - \frac{1994}{898425} a^{6} - \frac{827}{3993} a^{5} + \frac{133171}{299475} a^{4} - \frac{192919}{898425} a^{3} + \frac{19427}{179685} a^{2} - \frac{87478}{898425} a - \frac{292462}{898425}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3420605177.44 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2420 |
| The 26 conjugacy class representatives for t22n18 |
| Character table for t22n18 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | $20{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | $20{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.11.16.4 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $[8/5]_{5}$ | |