Normalized defining polynomial
\( x^{22} - x - 4 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[2, 10]$ |
| |
| Discriminant: |
\(1501615684835356042479183585709965255801157\)
\(\medspace = 239\cdot 13411\cdot 21198679507\cdot 22099931293386408281220419\)
|
| |
| Root discriminant: | \(82.63\) |
| |
| Galois root discriminant: | $239^{1/2}13411^{1/2}21198679507^{1/2}22099931293386408281220419^{1/2}\approx 1.2254042944413717e+21$ | ||
| Ramified primes: |
\(239\), \(13411\), \(21198679507\), \(22099931293386408281220419\)
|
| |
| Discriminant root field: | $\Q(\sqrt{15016\!\cdots\!01157}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$2a^{21}-4a^{10}-1$, $a^{21}+a^{20}+a^{19}+a^{18}+a^{17}+a^{16}+a^{15}+a^{14}+a^{13}+a^{12}+a^{11}+a^{10}+a^{9}+a^{8}+a^{7}+a^{6}+a^{5}+a^{4}+a^{3}+a^{2}+2a+3$, $2a^{21}-2a^{20}+2a^{19}-a^{18}+a^{17}+a^{16}+3a^{14}-a^{13}+4a^{12}-2a^{11}+3a^{10}-3a^{9}+a^{8}-4a^{7}-a^{6}-3a^{5}-3a^{4}-4a^{2}+3a-7$, $5a^{21}-2a^{20}-a^{19}+7a^{18}-3a^{17}-7a^{16}+4a^{15}-2a^{14}-5a^{13}+10a^{12}+3a^{11}-9a^{10}+4a^{9}-a^{8}-13a^{7}+9a^{6}+12a^{5}-9a^{4}+6a^{3}+8a^{2}-22a-9$, $2a^{21}+3a^{20}-2a^{19}-a^{18}-2a^{17}+4a^{16}+a^{15}-4a^{14}+a^{13}+a^{12}+5a^{11}-4a^{10}-5a^{9}+4a^{8}+2a^{7}+4a^{6}-7a^{5}+8a^{3}-3a^{2}-3a-9$, $3a^{21}+6a^{20}+5a^{19}+5a^{18}+3a^{17}+6a^{16}+10a^{15}+6a^{14}+4a^{13}+8a^{12}+9a^{11}+11a^{10}+6a^{9}+5a^{8}+14a^{7}+14a^{6}+8a^{5}+10a^{4}+12a^{3}+21a^{2}+18a+5$, $2a^{21}+3a^{20}+3a^{19}+4a^{18}+4a^{17}+5a^{16}+5a^{15}+5a^{14}+4a^{13}+3a^{12}+2a^{11}+2a^{10}+a^{9}+a^{8}-a^{5}+5a^{2}+6a+9$, $a^{21}-a^{20}+a^{19}+a^{16}-a^{15}+a^{14}-2a^{13}+a^{11}-2a^{10}-3a^{8}+a^{7}-2a^{5}+2a^{4}-3a^{3}+2a^{2}+1$, $a^{21}+a^{20}+3a^{19}+4a^{18}+2a^{17}+a^{15}+3a^{14}+3a^{13}+4a^{12}+5a^{11}+3a^{10}+2a^{9}+7a^{8}+9a^{7}+3a^{6}+4a^{4}+6a^{3}+7a^{2}+10a+9$, $5a^{21}+10a^{20}+5a^{19}+5a^{18}+a^{17}-2a^{16}+7a^{15}-5a^{13}-8a^{12}-18a^{11}-7a^{10}-5a^{9}-12a^{8}-11a^{7}-18a^{6}-9a^{5}+10a^{4}+11a^{3}+9a^{2}+10a+3$, $13a^{21}+4a^{20}-12a^{19}+2a^{18}+17a^{17}-6a^{16}-16a^{15}+15a^{14}+10a^{13}-21a^{12}-8a^{11}+20a^{10}-2a^{9}-29a^{8}+8a^{7}+23a^{6}-18a^{5}-21a^{4}+24a^{3}+26a^{2}-31a-21$
|
| |
| Regulator: | \( 10705394162100 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{10}\cdot 10705394162100 \cdot 1}{2\cdot\sqrt{1501615684835356042479183585709965255801157}}\cr\approx \mathstrut & 1.67552897873325 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 1124000727777607680000 |
| The 1002 conjugacy class representatives for $S_{22}$ |
| Character table for $S_{22}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 44 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}{,}\,{\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }{,}\,{\href{/padicField/2.1.0.1}{1} }^{2}$ | $17{,}\,{\href{/padicField/3.5.0.1}{5} }$ | $22$ | ${\href{/padicField/7.11.0.1}{11} }{,}\,{\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.14.0.1}{14} }{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | $21{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | $18{,}\,{\href{/padicField/19.4.0.1}{4} }$ | ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.11.0.1}{11} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.5.0.1}{5} }$ | ${\href{/padicField/31.14.0.1}{14} }{,}\,{\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | $19{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.7.0.1}{7} }^{2}$ | ${\href{/padicField/43.13.0.1}{13} }{,}\,{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.9.0.1}{9} }{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(239\)
| $\Q_{239}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $$[\ ]^{14}$$ | ||
|
\(13411\)
| $\Q_{13411}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $11$ | $1$ | $11$ | $0$ | $C_{11}$ | $$[\ ]^{11}$$ | ||
|
\(21198679507\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $$[\ ]^{14}$$ | ||
|
\(220\!\cdots\!419\)
| $\Q_{22\!\cdots\!19}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $19$ | $1$ | $19$ | $0$ | $C_{19}$ | $$[\ ]^{19}$$ |