Normalized defining polynomial
\( x^{22} - 4 x^{21} + x^{20} + 6 x^{19} + 21 x^{18} - 27 x^{17} - 24 x^{16} - 255 x^{15} + 291 x^{14} + 226 x^{13} + 1112 x^{12} + 1378 x^{11} + 1776 x^{10} + 2229 x^{9} + 2715 x^{8} + 2358 x^{7} + 1791 x^{6} + 360 x^{5} - 828 x^{4} - 9 x^{3} + 405 x^{2} + 117 x - 72 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(145648768224982995734053674169953=3^{20}\cdot 11^{19}\cdot 683\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 683$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{7}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{8}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{7}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{14} + \frac{1}{9} a^{11} + \frac{1}{3} a^{8}$, $\frac{1}{9} a^{18} - \frac{1}{9} a^{15} + \frac{1}{9} a^{12} - \frac{1}{3} a^{6}$, $\frac{1}{9} a^{19} - \frac{1}{9} a^{16} + \frac{1}{9} a^{13} - \frac{1}{3} a^{7}$, $\frac{1}{27} a^{20} + \frac{1}{9} a^{15} + \frac{1}{9} a^{14} - \frac{1}{9} a^{12} + \frac{1}{27} a^{11} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12712656921159432531890256396988959} a^{21} - \frac{77949693484357872104463636246917}{12712656921159432531890256396988959} a^{20} - \frac{13389528446212754150009318458486}{1412517435684381392432250710776551} a^{19} - \frac{3048253324077198288649982737123}{201788205097768770347464387253793} a^{18} - \frac{31927500065375140483175999038330}{605364615293306311042393161761379} a^{17} - \frac{461220259127558751840206622759515}{4237552307053144177296752132329653} a^{16} + \frac{20639056761107267053700047455671}{605364615293306311042393161761379} a^{15} - \frac{400043574577353048370271735786302}{4237552307053144177296752132329653} a^{14} + \frac{524193118026712860120928525309250}{4237552307053144177296752132329653} a^{13} + \frac{1431308386814311617196897523927311}{12712656921159432531890256396988959} a^{12} - \frac{287115919968011526223415770129151}{12712656921159432531890256396988959} a^{11} - \frac{692263542205026746983386757331243}{4237552307053144177296752132329653} a^{10} + \frac{81034542632444565483830042453932}{1412517435684381392432250710776551} a^{9} + \frac{193671873069603397198828480978490}{605364615293306311042393161761379} a^{8} - \frac{122025220171333968474102415886132}{470839145228127130810750236925517} a^{7} - \frac{105720815030116115344369657668400}{470839145228127130810750236925517} a^{6} - \frac{348263339794078704334366177286167}{1412517435684381392432250710776551} a^{5} + \frac{692408416760586489090365932192922}{1412517435684381392432250710776551} a^{4} - \frac{381325342153895219286406331692021}{1412517435684381392432250710776551} a^{3} + \frac{1715648661273963032309607288905}{4319625185579147989089451714913} a^{2} - \frac{84441485165924052007768912735761}{470839145228127130810750236925517} a - \frac{93498481981317661872457863228992}{1412517435684381392432250710776551}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 242986235.621 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.1.139234453205859.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | $20{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| 11 | Data not computed | ||||||
| 683 | Data not computed | ||||||