Normalized defining polynomial
\( x^{22} - 44 x^{16} - 11 x^{14} - 88 x^{12} + 264 x^{10} - 275 x^{8} + 154 x^{6} - 55 x^{4} + 11 x^{2} - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1249711388122384634961076169998336=2^{20}\cdot 11^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{53887063} a^{20} + \frac{19623235}{53887063} a^{18} + \frac{3921777}{53887063} a^{16} + \frac{4858109}{53887063} a^{14} - \frac{4138948}{53887063} a^{12} + \frac{2063866}{53887063} a^{10} - \frac{10750947}{53887063} a^{8} - \frac{22825253}{53887063} a^{6} - \frac{23539963}{53887063} a^{4} + \frac{24511736}{53887063} a^{2} + \frac{21014750}{53887063}$, $\frac{1}{107774126} a^{21} - \frac{1}{107774126} a^{20} + \frac{19623235}{107774126} a^{19} - \frac{19623235}{107774126} a^{18} + \frac{3921777}{107774126} a^{17} - \frac{3921777}{107774126} a^{16} + \frac{4858109}{107774126} a^{15} - \frac{4858109}{107774126} a^{14} - \frac{2069474}{53887063} a^{13} + \frac{2069474}{53887063} a^{12} + \frac{1031933}{53887063} a^{11} - \frac{1031933}{53887063} a^{10} + \frac{21568058}{53887063} a^{9} - \frac{21568058}{53887063} a^{8} - \frac{22825253}{107774126} a^{7} + \frac{22825253}{107774126} a^{6} - \frac{23539963}{107774126} a^{5} + \frac{23539963}{107774126} a^{4} + \frac{12255868}{53887063} a^{3} - \frac{12255868}{53887063} a^{2} - \frac{32872313}{107774126} a + \frac{32872313}{107774126}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65776820.1374 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.1.34522712143931.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | $20{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.11.13.6 | $x^{11} + 44 x^{3} + 11$ | $11$ | $1$ | $13$ | $F_{11}$ | $[13/10]_{10}$ |
| 11.11.13.6 | $x^{11} + 44 x^{3} + 11$ | $11$ | $1$ | $13$ | $F_{11}$ | $[13/10]_{10}$ | |