Normalized defining polynomial
\(x^{22} - x^{21} + x^{20} - 11 x^{19} - 5 x^{18} + 22 x^{17} + 22 x^{16} + 62 x^{15} - 83 x^{14} - 148 x^{13} + 44 x^{12} + 72 x^{11} + 52 x^{10} + 25 x^{9} + 50 x^{8} - 75 x^{7} - 65 x^{6} + 60 x^{5} - 17 x^{3} + 17 x^{2} - 7 x + 1\)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(10787252710010591209601111089\)\(\medspace = 167^{10}\cdot 639361\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $18.80$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $167, 639361$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{13} a^{19} - \frac{1}{13} a^{18} + \frac{4}{13} a^{16} - \frac{6}{13} a^{15} + \frac{5}{13} a^{14} + \frac{6}{13} a^{13} - \frac{1}{13} a^{12} - \frac{6}{13} a^{11} + \frac{2}{13} a^{10} - \frac{3}{13} a^{9} - \frac{1}{13} a^{8} + \frac{5}{13} a^{7} - \frac{3}{13} a^{6} + \frac{5}{13} a^{5} - \frac{2}{13} a^{4} + \frac{5}{13} a^{3} + \frac{2}{13} a^{2} + \frac{6}{13} a - \frac{1}{13}$, $\frac{1}{65} a^{20} - \frac{2}{65} a^{19} + \frac{1}{65} a^{18} + \frac{17}{65} a^{17} + \frac{16}{65} a^{16} - \frac{28}{65} a^{15} - \frac{12}{65} a^{14} - \frac{4}{13} a^{13} + \frac{21}{65} a^{12} + \frac{21}{65} a^{11} + \frac{21}{65} a^{10} - \frac{11}{65} a^{9} + \frac{6}{65} a^{8} + \frac{31}{65} a^{7} - \frac{18}{65} a^{6} + \frac{6}{65} a^{5} + \frac{4}{13} a^{4} + \frac{23}{65} a^{3} + \frac{17}{65} a^{2} - \frac{4}{13} a - \frac{12}{65}$, $\frac{1}{3167708228660105} a^{21} - \frac{302913351064}{633541645732021} a^{20} - \frac{66024453997718}{3167708228660105} a^{19} - \frac{116393543809706}{3167708228660105} a^{18} + \frac{47839410711119}{633541645732021} a^{17} - \frac{21842281057607}{243669863743085} a^{16} + \frac{685846579688552}{3167708228660105} a^{15} + \frac{1560912367767466}{3167708228660105} a^{14} + \frac{1260422238376576}{3167708228660105} a^{13} - \frac{610595261462517}{3167708228660105} a^{12} - \frac{986381573550677}{3167708228660105} a^{11} - \frac{1255282864509749}{3167708228660105} a^{10} - \frac{763214669518231}{3167708228660105} a^{9} - \frac{647747073020577}{3167708228660105} a^{8} + \frac{717763764960674}{3167708228660105} a^{7} + \frac{52588438474753}{633541645732021} a^{6} + \frac{921026431721457}{3167708228660105} a^{5} + \frac{1202810316394788}{3167708228660105} a^{4} - \frac{567553927296647}{3167708228660105} a^{3} + \frac{170434785117459}{3167708228660105} a^{2} + \frac{155678779812538}{3167708228660105} a - \frac{836651604066679}{3167708228660105}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 116549.459796 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 45056 |
The 200 conjugacy class representatives for t22n32 are not computed |
Character table for t22n32 is not computed |
Intermediate fields
11.1.129891985607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | $22$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$167$ | $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
639361 | Data not computed |