Normalized defining polynomial
\( x^{22} - 8 x - 5 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102822693663823511165277394101096189611261=163\cdot 10247\cdot 146563\cdot 31782379\cdot 13215813098629700022313\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $163, 10247, 146563, 31782379, 13215813098629700022313$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{10}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1292489012420 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1124000727777607680000 |
| The 1002 conjugacy class representatives for t22n59 are not computed |
| Character table for t22n59 is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 44 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }{,}\,{\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | $19{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $20{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $17{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | $21{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }{,}\,{\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $17{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $163$ | $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 163.2.1.2 | $x^{2} + 652$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.3.0.1 | $x^{3} - x + 14$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 163.5.0.1 | $x^{5} - x + 9$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 163.10.0.1 | $x^{10} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 10247 | Data not computed | ||||||
| 146563 | Data not computed | ||||||
| 31782379 | Data not computed | ||||||
| 13215813098629700022313 | Data not computed | ||||||