Normalized defining polynomial
\( x^{22} - x^{21} - 11 x^{20} + 5 x^{19} + 71 x^{18} + 39 x^{17} - 241 x^{16} - 440 x^{15} + 36 x^{14} + 974 x^{13} + 1084 x^{12} - 1095 x^{11} - 6129 x^{10} - 12496 x^{9} - 16556 x^{8} - 15445 x^{7} - 9954 x^{6} - 3936 x^{5} - 451 x^{4} + 325 x^{3} + 155 x^{2} - 10 x - 5 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102653502644738770935211181640625=5^{16}\cdot 11^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{6} a^{17} + \frac{1}{6} a^{15} + \frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6}$, $\frac{1}{12} a^{18} + \frac{1}{12} a^{16} - \frac{1}{4} a^{15} + \frac{1}{12} a^{14} - \frac{1}{12} a^{13} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{4} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{12} a + \frac{1}{4}$, $\frac{1}{228} a^{19} - \frac{1}{76} a^{18} - \frac{3}{76} a^{17} - \frac{5}{38} a^{16} - \frac{3}{38} a^{15} + \frac{5}{57} a^{14} - \frac{7}{228} a^{13} + \frac{3}{38} a^{12} - \frac{14}{57} a^{11} + \frac{21}{76} a^{10} - \frac{13}{114} a^{9} - \frac{11}{228} a^{8} + \frac{43}{114} a^{7} + \frac{43}{114} a^{6} - \frac{55}{228} a^{5} - \frac{103}{228} a^{4} + \frac{1}{38} a^{3} - \frac{113}{228} a^{2} - \frac{15}{38} a + \frac{73}{228}$, $\frac{1}{1140} a^{20} + \frac{1}{57} a^{18} - \frac{1}{12} a^{17} - \frac{46}{285} a^{16} + \frac{9}{38} a^{15} + \frac{41}{228} a^{14} + \frac{7}{228} a^{13} + \frac{3}{95} a^{12} + \frac{17}{228} a^{11} + \frac{25}{228} a^{10} - \frac{11}{76} a^{9} - \frac{289}{1140} a^{8} - \frac{53}{114} a^{7} - \frac{43}{228} a^{6} - \frac{23}{114} a^{5} - \frac{379}{1140} a^{4} + \frac{1}{4} a^{3} - \frac{25}{228} a^{2} - \frac{47}{228} a + \frac{97}{228}$, $\frac{1}{168095357221495513399080} a^{21} - \frac{2482733978762729377}{84047678610747756699540} a^{20} - \frac{9138474360710865319}{33619071444299102679816} a^{19} - \frac{318888930418499955215}{8404767861074775669954} a^{18} - \frac{3803676555901632113823}{56031785740498504466360} a^{17} + \frac{8528342898792281962283}{84047678610747756699540} a^{16} + \frac{1966297472053948161773}{33619071444299102679816} a^{15} + \frac{2150603521098042351601}{11206357148099700893272} a^{14} - \frac{19404208353280869068009}{168095357221495513399080} a^{13} + \frac{38093563759701223302481}{168095357221495513399080} a^{12} - \frac{1061617929775781779211}{11206357148099700893272} a^{11} + \frac{2093977614467398388446}{4202383930537387834977} a^{10} - \frac{18524283305940935538259}{168095357221495513399080} a^{9} - \frac{12974914834057145053973}{56031785740498504466360} a^{8} + \frac{1391783462700924672891}{11206357148099700893272} a^{7} - \frac{6354438187091246859175}{16809535722149551339908} a^{6} - \frac{22246131974908806675257}{84047678610747756699540} a^{5} + \frac{13921058502830335875581}{28015892870249252233180} a^{4} - \frac{2308323720235659562941}{11206357148099700893272} a^{3} + \frac{5995230184371862382975}{16809535722149551339908} a^{2} - \frac{15363662735553717408329}{33619071444299102679816} a - \frac{15790145597457941348071}{33619071444299102679816}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67615839.0404 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{11}:D_{11}.C_2$ (as 22T8):
| A solvable group of order 484 |
| The 34 conjugacy class representatives for $C_{11}:D_{11}.C_2$ |
| Character table for $C_{11}:D_{11}.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $11$ | 11.11.20.1 | $x^{11} - 11 x^{10} + 374$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ |
| 11.11.0.1 | $x^{11} - x + 3$ | $1$ | $11$ | $0$ | $C_{11}$ | $[\ ]^{11}$ |