Normalized defining polynomial
\( x^{22} - 11 x^{21} + 44 x^{20} - 55 x^{19} - 149 x^{18} + 714 x^{17} - 1042 x^{16} - 742 x^{15} + 5168 x^{14} - 5630 x^{13} - 5248 x^{12} + 15888 x^{11} - 6710 x^{10} - 12738 x^{9} + 15541 x^{8} - 1265 x^{7} - 8234 x^{6} + 5083 x^{5} + 294 x^{4} - 1334 x^{3} + 492 x^{2} - 67 x + 3 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(924610449303392395108565351166810367173677581=74843^{8}\cdot 939181\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $110.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $74843, 939181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{18} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{2}{9} a^{12} + \frac{1}{3} a^{11} - \frac{2}{9} a^{10} - \frac{4}{9} a^{9} - \frac{1}{9} a^{8} - \frac{2}{9} a^{7} + \frac{1}{9} a^{5} - \frac{4}{9} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{9} a^{19} + \frac{2}{9} a^{13} + \frac{4}{9} a^{11} - \frac{4}{9} a^{10} - \frac{4}{9} a^{9} - \frac{2}{9} a^{8} + \frac{1}{3} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} - \frac{4}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{66285} a^{20} - \frac{2}{13257} a^{19} + \frac{962}{66285} a^{18} - \frac{2791}{22095} a^{17} + \frac{46}{7365} a^{16} - \frac{1519}{7365} a^{15} - \frac{28231}{66285} a^{14} + \frac{11059}{66285} a^{13} + \frac{434}{66285} a^{12} - \frac{16619}{66285} a^{11} + \frac{1054}{13257} a^{10} - \frac{7718}{22095} a^{9} - \frac{68}{22095} a^{8} - \frac{473}{22095} a^{7} - \frac{4105}{13257} a^{6} + \frac{31268}{66285} a^{5} - \frac{371}{66285} a^{4} + \frac{32776}{66285} a^{3} - \frac{23983}{66285} a^{2} - \frac{11909}{66285} a + \frac{8738}{22095}$, $\frac{1}{66285} a^{21} + \frac{862}{66285} a^{19} + \frac{1247}{66285} a^{18} + \frac{1688}{22095} a^{17} - \frac{353}{2455} a^{16} - \frac{10276}{66285} a^{15} + \frac{592}{2455} a^{14} + \frac{2516}{7365} a^{13} - \frac{4093}{22095} a^{12} - \frac{139}{1473} a^{11} + \frac{7451}{66285} a^{10} - \frac{3598}{22095} a^{9} + \frac{6212}{22095} a^{8} + \frac{1895}{13257} a^{7} + \frac{926}{22095} a^{6} - \frac{708}{2455} a^{5} + \frac{29066}{66285} a^{4} - \frac{617}{7365} a^{3} - \frac{3421}{7365} a^{2} + \frac{17599}{66285} a - \frac{200}{4419}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3410489314190000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 74843 | Data not computed | ||||||
| 939181 | Data not computed | ||||||