Normalized defining polynomial
\( x^{22} - 29 x^{20} - 35 x^{18} + 7965 x^{16} - 79140 x^{14} + 140187 x^{12} + 1374597 x^{10} - 6587220 x^{8} + 8430720 x^{6} - 2011840 x^{4} + 141056 x^{2} - 1024 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(62584688015026276997133031640625000000000000=2^{12}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} - \frac{4}{11} a^{10} - \frac{4}{11} a^{6} - \frac{3}{11} a^{4} - \frac{2}{11} a^{2} + \frac{1}{11}$, $\frac{1}{22} a^{13} + \frac{7}{22} a^{11} - \frac{1}{2} a^{9} + \frac{7}{22} a^{7} + \frac{4}{11} a^{5} + \frac{9}{22} a^{3} + \frac{1}{22} a$, $\frac{1}{44} a^{14} - \frac{1}{44} a^{12} + \frac{21}{44} a^{10} - \frac{15}{44} a^{8} - \frac{1}{11} a^{6} + \frac{1}{4} a^{4} + \frac{17}{44} a^{2} - \frac{2}{11}$, $\frac{1}{88} a^{15} - \frac{1}{88} a^{13} - \frac{23}{88} a^{11} - \frac{15}{88} a^{9} + \frac{5}{11} a^{7} + \frac{1}{8} a^{5} + \frac{17}{88} a^{3} - \frac{1}{11} a$, $\frac{1}{176} a^{16} - \frac{1}{176} a^{14} + \frac{1}{176} a^{12} - \frac{23}{176} a^{10} + \frac{5}{22} a^{8} - \frac{85}{176} a^{6} - \frac{5}{16} a^{4} - \frac{7}{22} a^{2} - \frac{4}{11}$, $\frac{1}{704} a^{17} - \frac{1}{352} a^{16} - \frac{1}{704} a^{15} - \frac{3}{352} a^{14} - \frac{15}{704} a^{13} - \frac{13}{352} a^{12} - \frac{311}{704} a^{11} - \frac{173}{352} a^{10} - \frac{39}{88} a^{9} + \frac{5}{88} a^{8} - \frac{21}{704} a^{7} - \frac{1}{32} a^{6} - \frac{7}{704} a^{5} + \frac{59}{352} a^{4} - \frac{25}{88} a^{3} - \frac{39}{88} a^{2} + \frac{17}{44} a + \frac{5}{22}$, $\frac{1}{1408} a^{18} + \frac{3}{1408} a^{16} - \frac{1}{176} a^{15} - \frac{3}{1408} a^{14} + \frac{1}{176} a^{13} - \frac{3}{1408} a^{12} - \frac{65}{176} a^{11} + \frac{15}{352} a^{10} - \frac{73}{176} a^{9} + \frac{603}{1408} a^{8} - \frac{5}{22} a^{7} - \frac{283}{1408} a^{6} - \frac{1}{16} a^{5} - \frac{125}{352} a^{4} + \frac{71}{176} a^{3} - \frac{5}{22} a^{2} + \frac{1}{22} a - \frac{1}{22}$, $\frac{1}{2816} a^{19} - \frac{1}{2816} a^{17} + \frac{1}{2816} a^{15} - \frac{1}{88} a^{14} + \frac{57}{2816} a^{13} - \frac{3}{88} a^{12} + \frac{163}{352} a^{11} - \frac{5}{88} a^{10} + \frac{443}{2816} a^{9} - \frac{29}{88} a^{8} - \frac{199}{2816} a^{7} + \frac{5}{22} a^{6} + \frac{117}{352} a^{5} - \frac{43}{88} a^{4} + \frac{15}{88} a^{3} + \frac{35}{88} a^{2} + \frac{1}{11} a + \frac{1}{22}$, $\frac{1}{70675823827640223344525824} a^{20} + \frac{24600568978828586711883}{70675823827640223344525824} a^{18} + \frac{160317525477700694497221}{70675823827640223344525824} a^{16} + \frac{426977373943531976788853}{70675823827640223344525824} a^{14} - \frac{1}{44} a^{13} + \frac{733051812363697719611909}{17668955956910055836131456} a^{12} - \frac{7}{44} a^{11} + \frac{14634863514511943146506859}{70675823827640223344525824} a^{10} + \frac{1}{4} a^{9} - \frac{25319995734221248213996483}{70675823827640223344525824} a^{8} + \frac{15}{44} a^{7} + \frac{5532045292575144103544721}{17668955956910055836131456} a^{6} - \frac{2}{11} a^{5} - \frac{196842894417926762043739}{4417238989227513959032864} a^{4} + \frac{13}{44} a^{3} - \frac{24952203642948046250959}{276077436826719622439554} a^{2} - \frac{1}{44} a + \frac{101148727274492009220033}{276077436826719622439554}$, $\frac{1}{141351647655280446689051648} a^{21} + \frac{24600568978828586711883}{141351647655280446689051648} a^{19} - \frac{40466064941731758186091}{141351647655280446689051648} a^{17} - \frac{1}{352} a^{16} + \frac{627760964362964429472165}{141351647655280446689051648} a^{15} + \frac{1}{352} a^{14} - \frac{120278446918890204292167}{35337911913820111672262912} a^{13} + \frac{15}{352} a^{12} + \frac{32103035881002566529955003}{141351647655280446689051648} a^{11} - \frac{41}{352} a^{10} - \frac{33351339350998546321328963}{141351647655280446689051648} a^{9} - \frac{5}{44} a^{8} + \frac{13011234035699002965998093}{35337911913820111672262912} a^{7} + \frac{21}{352} a^{6} + \frac{547850734453584826052541}{4417238989227513959032864} a^{5} + \frac{7}{352} a^{4} + \frac{364211747954183341157413}{1104309747306878489758216} a^{3} - \frac{19}{44} a^{2} + \frac{69397825239067797049077}{276077436826719622439554} a + \frac{5}{22}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3681360209630000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 56320 |
| The 40 conjugacy class representatives for t22n33 |
| Character table for t22n33 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.10 | $x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |