Normalized defining polynomial
\( x^{22} - 44 x^{20} + 660 x^{18} - 2640 x^{16} - 27456 x^{14} + 312576 x^{12} - 1046848 x^{10} + 991232 x^{8} + 892672 x^{6} - 1402368 x^{4} + 259072 x^{2} - 11264 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4345422526111716207940252979624633534775296=2^{34}\cdot 7^{10}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{8} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{16} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{32} a^{12}$, $\frac{1}{64} a^{13} - \frac{1}{2} a^{2}$, $\frac{1}{64} a^{14}$, $\frac{1}{128} a^{15} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{128} a^{16}$, $\frac{1}{256} a^{17} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{256} a^{18}$, $\frac{1}{512} a^{19} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{21109654650303099392} a^{20} - \frac{7403499610296461}{5277413662575774848} a^{18} - \frac{4581166526685211}{5277413662575774848} a^{16} - \frac{3190902454073571}{659676707821971856} a^{14} + \frac{16227841168991827}{1319353415643943712} a^{12} + \frac{10123344061605955}{659676707821971856} a^{10} - \frac{9615459064288487}{164919176955492964} a^{8} + \frac{19226839853245565}{164919176955492964} a^{6} + \frac{7979457979786403}{82459588477746482} a^{4} - \frac{7843730261627306}{41229794238873241} a^{2} - \frac{9252433482021018}{41229794238873241}$, $\frac{1}{21109654650303099392} a^{21} + \frac{11615795797687397}{21109654650303099392} a^{19} - \frac{4581166526685211}{5277413662575774848} a^{17} + \frac{15702574606284673}{5277413662575774848} a^{15} - \frac{8774111900889587}{2638706831287887424} a^{13} + \frac{10123344061605955}{659676707821971856} a^{11} + \frac{2767957981719293}{659676707821971856} a^{9} - \frac{1}{16} a^{8} - \frac{2776114532382111}{329838353910985928} a^{7} - \frac{1}{8} a^{6} + \frac{7979457979786403}{82459588477746482} a^{5} - \frac{7843730261627306}{41229794238873241} a^{3} - \frac{9252433482021018}{41229794238873241} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 515955293802000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||