Normalized defining polynomial
\( x^{22} - 5 x^{21} - 49 x^{20} + 149 x^{19} + 1117 x^{18} - 1000 x^{17} - 12006 x^{16} - 3533 x^{15} + 64273 x^{14} + 63958 x^{13} - 171145 x^{12} - 263217 x^{11} + 207316 x^{10} + 471355 x^{9} - 84325 x^{8} - 394692 x^{7} + 1221 x^{6} + 166543 x^{5} + 881 x^{4} - 34179 x^{3} + 1826 x^{2} + 2665 x - 347 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4299288794103243236127943577240214703609=19^{11}\cdot 211^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{133} a^{19} - \frac{33}{133} a^{18} - \frac{46}{133} a^{17} + \frac{48}{133} a^{16} - \frac{54}{133} a^{15} - \frac{36}{133} a^{14} + \frac{1}{19} a^{13} + \frac{30}{133} a^{12} + \frac{15}{133} a^{11} + \frac{33}{133} a^{10} - \frac{66}{133} a^{9} - \frac{18}{133} a^{8} - \frac{22}{133} a^{7} - \frac{24}{133} a^{6} - \frac{40}{133} a^{5} + \frac{24}{133} a^{4} + \frac{29}{133} a^{3} + \frac{53}{133} a^{2} - \frac{60}{133} a - \frac{37}{133}$, $\frac{1}{21413} a^{20} + \frac{78}{21413} a^{19} + \frac{10522}{21413} a^{18} + \frac{5183}{21413} a^{17} - \frac{578}{21413} a^{16} + \frac{3812}{21413} a^{15} - \frac{2393}{21413} a^{14} + \frac{463}{931} a^{13} + \frac{10128}{21413} a^{12} + \frac{9146}{21413} a^{11} + \frac{1336}{21413} a^{10} - \frac{6280}{21413} a^{9} + \frac{7024}{21413} a^{8} - \frac{1402}{21413} a^{7} + \frac{1552}{21413} a^{6} - \frac{5214}{21413} a^{5} + \frac{3491}{21413} a^{4} - \frac{7501}{21413} a^{3} - \frac{9871}{21413} a^{2} + \frac{4741}{21413} a - \frac{6102}{21413}$, $\frac{1}{347459928049591919555925396400527688369} a^{21} - \frac{2487253122097843927633287359661304}{347459928049591919555925396400527688369} a^{20} + \frac{953612041138828271647229182403780256}{347459928049591919555925396400527688369} a^{19} + \frac{72759140312761154719031146754046180256}{347459928049591919555925396400527688369} a^{18} + \frac{105658626058915176525719258870600253739}{347459928049591919555925396400527688369} a^{17} + \frac{162637755730213903697121147102377970075}{347459928049591919555925396400527688369} a^{16} + \frac{110633341910998534852974717581134266192}{347459928049591919555925396400527688369} a^{15} - \frac{37164513361457104146213761453170533306}{347459928049591919555925396400527688369} a^{14} - \frac{7921712736509502140642076119469298646}{18287364634189048397680284021080404651} a^{13} - \frac{89947726138977142739147329997880662678}{347459928049591919555925396400527688369} a^{12} - \frac{45648772526291228972500650898111118066}{347459928049591919555925396400527688369} a^{11} + \frac{981115226223922361737572308875625654}{18287364634189048397680284021080404651} a^{10} - \frac{3944417571045182443040213025663207781}{49637132578513131365132199485789669767} a^{9} - \frac{8482573396249153274293540678495555811}{49637132578513131365132199485789669767} a^{8} + \frac{7030029916377793783549922536830225298}{26727686773045532273532722800040591413} a^{7} + \frac{85842226645504300379692476360802935562}{347459928049591919555925396400527688369} a^{6} + \frac{140038301294508450276511266705849975207}{347459928049591919555925396400527688369} a^{5} + \frac{141170949113240732944438515186106122802}{347459928049591919555925396400527688369} a^{4} - \frac{108045762092589246980279661101092225910}{347459928049591919555925396400527688369} a^{3} + \frac{70641261746603926284137778106776649936}{347459928049591919555925396400527688369} a^{2} - \frac{140660901730925645821228529622091495308}{347459928049591919555925396400527688369} a + \frac{154007432367101688166022713381386986134}{347459928049591919555925396400527688369}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3627901913190 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.1035571956771279049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 211 | Data not computed | ||||||