Normalized defining polynomial
\( x^{22} - 62 x^{20} + 1332 x^{18} - 12445 x^{16} + 46846 x^{14} - 17000 x^{12} - 234649 x^{10} + 219644 x^{8} + 210856 x^{6} - 218489 x^{4} + 42680 x^{2} - 81 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4129233136056857981979443884256982828952059904=2^{22}\cdot 74843^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{15} + \frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{2}{9} a^{9} + \frac{4}{9} a^{7} + \frac{2}{9} a^{5} + \frac{2}{9} a$, $\frac{1}{9} a^{18} - \frac{1}{9} a^{16} + \frac{1}{9} a^{14} + \frac{1}{9} a^{12} - \frac{2}{9} a^{10} + \frac{4}{9} a^{8} + \frac{2}{9} a^{6} + \frac{2}{9} a^{2}$, $\frac{1}{9} a^{19} + \frac{2}{9} a^{13} - \frac{1}{9} a^{11} + \frac{2}{9} a^{9} - \frac{1}{3} a^{7} + \frac{2}{9} a^{5} + \frac{2}{9} a^{3} + \frac{2}{9} a$, $\frac{1}{5066542362304997056297765737} a^{20} + \frac{53102712044800809831200461}{1688847454101665685432588579} a^{18} + \frac{261509448951635151651731897}{1688847454101665685432588579} a^{16} - \frac{964019226136770104480516551}{5066542362304997056297765737} a^{14} + \frac{632085033667306706263852715}{5066542362304997056297765737} a^{12} + \frac{354459010607854840776909983}{5066542362304997056297765737} a^{10} + \frac{14603202646274726817626196}{187649717122407298381398731} a^{8} + \frac{1217806540422899341597997975}{5066542362304997056297765737} a^{6} - \frac{1880751145179601788914247487}{5066542362304997056297765737} a^{4} + \frac{1065889145964822020386719416}{5066542362304997056297765737} a^{2} - \frac{41213386454981593121378060}{187649717122407298381398731}$, $\frac{1}{5066542362304997056297765737} a^{21} + \frac{53102712044800809831200461}{1688847454101665685432588579} a^{19} + \frac{24619910609742617756777722}{562949151367221895144196193} a^{17} - \frac{401070074769548209336320358}{5066542362304997056297765737} a^{15} + \frac{69135882300084811119656522}{5066542362304997056297765737} a^{13} - \frac{208490140759367054367286210}{5066542362304997056297765737} a^{11} + \frac{506728258061287138121433226}{1688847454101665685432588579} a^{9} - \frac{1033990065045988238978786797}{5066542362304997056297765737} a^{7} + \frac{2059892914390951477095125864}{5066542362304997056297765737} a^{5} + \frac{1065889145964822020386719416}{5066542362304997056297765737} a^{3} - \frac{746219912339648934855200002}{1688847454101665685432588579} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4003271696600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 675840 |
| The 56 conjugacy class representatives for t22n39 are not computed |
| Character table for t22n39 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||