Properties

Label 22.18.4098058278...8729.1
Degree $22$
Signature $[18, 2]$
Discriminant $23^{21}\cdot 47^{3}$
Root discriminant $33.72$
Ramified primes $23, 47$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 22T28

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 130, -672, -121, 4487, -3443, -10291, 12822, 8445, -17627, 1291, 9774, -5144, -984, 1938, -508, -76, -82, 35, 42, -14, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 3*x^21 - 14*x^20 + 42*x^19 + 35*x^18 - 82*x^17 - 76*x^16 - 508*x^15 + 1938*x^14 - 984*x^13 - 5144*x^12 + 9774*x^11 + 1291*x^10 - 17627*x^9 + 8445*x^8 + 12822*x^7 - 10291*x^6 - 3443*x^5 + 4487*x^4 - 121*x^3 - 672*x^2 + 130*x + 1)
 
gp: K = bnfinit(x^22 - 3*x^21 - 14*x^20 + 42*x^19 + 35*x^18 - 82*x^17 - 76*x^16 - 508*x^15 + 1938*x^14 - 984*x^13 - 5144*x^12 + 9774*x^11 + 1291*x^10 - 17627*x^9 + 8445*x^8 + 12822*x^7 - 10291*x^6 - 3443*x^5 + 4487*x^4 - 121*x^3 - 672*x^2 + 130*x + 1, 1)
 

Normalized defining polynomial

\( x^{22} - 3 x^{21} - 14 x^{20} + 42 x^{19} + 35 x^{18} - 82 x^{17} - 76 x^{16} - 508 x^{15} + 1938 x^{14} - 984 x^{13} - 5144 x^{12} + 9774 x^{11} + 1291 x^{10} - 17627 x^{9} + 8445 x^{8} + 12822 x^{7} - 10291 x^{6} - 3443 x^{5} + 4487 x^{4} - 121 x^{3} - 672 x^{2} + 130 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.72$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $23, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{47} a^{19} - \frac{21}{47} a^{18} - \frac{12}{47} a^{17} - \frac{6}{47} a^{16} - \frac{16}{47} a^{14} + \frac{10}{47} a^{13} + \frac{17}{47} a^{12} - \frac{19}{47} a^{11} + \frac{8}{47} a^{10} - \frac{15}{47} a^{8} + \frac{13}{47} a^{7} - \frac{1}{47} a^{6} + \frac{15}{47} a^{5} + \frac{2}{47} a^{4} - \frac{5}{47} a^{3} + \frac{19}{47} a^{2} - \frac{2}{47} a + \frac{13}{47}$, $\frac{1}{47} a^{20} + \frac{17}{47} a^{18} - \frac{23}{47} a^{17} + \frac{15}{47} a^{16} - \frac{16}{47} a^{15} + \frac{3}{47} a^{14} - \frac{8}{47} a^{13} + \frac{9}{47} a^{12} - \frac{15}{47} a^{11} - \frac{20}{47} a^{10} - \frac{15}{47} a^{9} - \frac{20}{47} a^{8} - \frac{10}{47} a^{7} - \frac{6}{47} a^{6} - \frac{12}{47} a^{5} - \frac{10}{47} a^{4} + \frac{8}{47} a^{3} + \frac{21}{47} a^{2} + \frac{18}{47} a - \frac{9}{47}$, $\frac{1}{9616201774522969014902854741} a^{21} + \frac{73366957173937850820321891}{9616201774522969014902854741} a^{20} - \frac{11294407237370530368961401}{9616201774522969014902854741} a^{19} + \frac{2820537347209009756165757945}{9616201774522969014902854741} a^{18} + \frac{722018254616702291377246824}{9616201774522969014902854741} a^{17} - \frac{3601238111015306901132434564}{9616201774522969014902854741} a^{16} - \frac{2658206447462260503800226188}{9616201774522969014902854741} a^{15} - \frac{2888477121190105490092235653}{9616201774522969014902854741} a^{14} - \frac{2765398247839389350928233000}{9616201774522969014902854741} a^{13} + \frac{1608250796361509986235039552}{9616201774522969014902854741} a^{12} - \frac{3368745431435803558236570472}{9616201774522969014902854741} a^{11} - \frac{4220527559750756660156742131}{9616201774522969014902854741} a^{10} + \frac{3335158476565660142170948564}{9616201774522969014902854741} a^{9} + \frac{2964858426065710641474304121}{9616201774522969014902854741} a^{8} + \frac{3149342046176342070779054036}{9616201774522969014902854741} a^{7} + \frac{540171663822385527968870315}{9616201774522969014902854741} a^{6} + \frac{602879309000743342289213823}{9616201774522969014902854741} a^{5} + \frac{1942756465882829500395413702}{9616201774522969014902854741} a^{4} - \frac{226999674933794930963374034}{9616201774522969014902854741} a^{3} - \frac{2214291829776809588599387694}{9616201774522969014902854741} a^{2} - \frac{2756145323818647035929313045}{9616201774522969014902854741} a + \frac{4003023228504706624437011163}{9616201774522969014902854741}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1999453068.78 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

22T28:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 22528
The 208 conjugacy class representatives for t22n28 are not computed
Character table for t22n28 is not computed

Intermediate fields

\(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 22 siblings: data not computed
Degree 44 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ $22$ $22$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ R $22$ $22$ $22$ $22$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ R $22$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
23Data not computed
47Data not computed