Normalized defining polynomial
\( x^{22} - 3 x^{21} - 14 x^{20} + 42 x^{19} + 35 x^{18} - 82 x^{17} - 76 x^{16} - 508 x^{15} + 1938 x^{14} - 984 x^{13} - 5144 x^{12} + 9774 x^{11} + 1291 x^{10} - 17627 x^{9} + 8445 x^{8} + 12822 x^{7} - 10291 x^{6} - 3443 x^{5} + 4487 x^{4} - 121 x^{3} - 672 x^{2} + 130 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{47} a^{19} - \frac{21}{47} a^{18} - \frac{12}{47} a^{17} - \frac{6}{47} a^{16} - \frac{16}{47} a^{14} + \frac{10}{47} a^{13} + \frac{17}{47} a^{12} - \frac{19}{47} a^{11} + \frac{8}{47} a^{10} - \frac{15}{47} a^{8} + \frac{13}{47} a^{7} - \frac{1}{47} a^{6} + \frac{15}{47} a^{5} + \frac{2}{47} a^{4} - \frac{5}{47} a^{3} + \frac{19}{47} a^{2} - \frac{2}{47} a + \frac{13}{47}$, $\frac{1}{47} a^{20} + \frac{17}{47} a^{18} - \frac{23}{47} a^{17} + \frac{15}{47} a^{16} - \frac{16}{47} a^{15} + \frac{3}{47} a^{14} - \frac{8}{47} a^{13} + \frac{9}{47} a^{12} - \frac{15}{47} a^{11} - \frac{20}{47} a^{10} - \frac{15}{47} a^{9} - \frac{20}{47} a^{8} - \frac{10}{47} a^{7} - \frac{6}{47} a^{6} - \frac{12}{47} a^{5} - \frac{10}{47} a^{4} + \frac{8}{47} a^{3} + \frac{21}{47} a^{2} + \frac{18}{47} a - \frac{9}{47}$, $\frac{1}{9616201774522969014902854741} a^{21} + \frac{73366957173937850820321891}{9616201774522969014902854741} a^{20} - \frac{11294407237370530368961401}{9616201774522969014902854741} a^{19} + \frac{2820537347209009756165757945}{9616201774522969014902854741} a^{18} + \frac{722018254616702291377246824}{9616201774522969014902854741} a^{17} - \frac{3601238111015306901132434564}{9616201774522969014902854741} a^{16} - \frac{2658206447462260503800226188}{9616201774522969014902854741} a^{15} - \frac{2888477121190105490092235653}{9616201774522969014902854741} a^{14} - \frac{2765398247839389350928233000}{9616201774522969014902854741} a^{13} + \frac{1608250796361509986235039552}{9616201774522969014902854741} a^{12} - \frac{3368745431435803558236570472}{9616201774522969014902854741} a^{11} - \frac{4220527559750756660156742131}{9616201774522969014902854741} a^{10} + \frac{3335158476565660142170948564}{9616201774522969014902854741} a^{9} + \frac{2964858426065710641474304121}{9616201774522969014902854741} a^{8} + \frac{3149342046176342070779054036}{9616201774522969014902854741} a^{7} + \frac{540171663822385527968870315}{9616201774522969014902854741} a^{6} + \frac{602879309000743342289213823}{9616201774522969014902854741} a^{5} + \frac{1942756465882829500395413702}{9616201774522969014902854741} a^{4} - \frac{226999674933794930963374034}{9616201774522969014902854741} a^{3} - \frac{2214291829776809588599387694}{9616201774522969014902854741} a^{2} - \frac{2756145323818647035929313045}{9616201774522969014902854741} a + \frac{4003023228504706624437011163}{9616201774522969014902854741}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1999453068.78 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||