Normalized defining polynomial
\( x^{22} - 257 x^{20} + 24474 x^{18} - 973488 x^{16} + 4911342 x^{14} + 833458818 x^{12} - 24773125392 x^{10} + 177479869188 x^{8} + 2609466379182 x^{6} - 46742377664590 x^{4} + 197759461441604 x^{2} - 49242609059256 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35968643551695332182677064543344800913941547158154336510998469613936975508099279042617383314590716452143104=2^{73}\cdot 3^{20}\cdot 31\cdot 337^{8}\cdot 991\cdot 310501^{8}\cdot 2473607\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69{,}735.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31, 337, 991, 310501, 2473607$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{16}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{17}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{2950442336895763005424408194123522436283571976756718491515}{57887320607168480035725746532474501690526662399435613406516} a^{18} - \frac{2072897465315298801396186263828529852308590716023013373279}{14471830151792120008931436633118625422631665599858903351629} a^{16} - \frac{45934940523762542979720200406415829103826870945991606533}{1315620922890192728084676057556238674784696872714445759239} a^{14} - \frac{7750991424342622926846838761607506147523363715528612321633}{28943660303584240017862873266237250845263331199717806703258} a^{12} + \frac{14369399608388516778481253602814827984491107713778032217183}{28943660303584240017862873266237250845263331199717806703258} a^{10} + \frac{6384950929421186309646537261575526246587170168321909433914}{14471830151792120008931436633118625422631665599858903351629} a^{8} + \frac{6101277060851129071657329624694490024855228449302033897019}{14471830151792120008931436633118625422631665599858903351629} a^{6} - \frac{8999527289941553270828354357051563526970304822402894928151}{28943660303584240017862873266237250845263331199717806703258} a^{4} - \frac{1079280007262362927759679245240881203101417689549458711869}{28943660303584240017862873266237250845263331199717806703258} a^{2} + \frac{6973875443932986974756931871720393566502063305424122925545}{14471830151792120008931436633118625422631665599858903351629}$, $\frac{1}{520985885464516320321531718792270515214739961594920520658644} a^{21} - \frac{60837762944064243041150154726598024126810234376192331898031}{520985885464516320321531718792270515214739961594920520658644} a^{19} - \frac{5514909205702472936775874298982385091646752105293972241636}{43415490455376360026794309899355876267894996799576710054887} a^{17} + \frac{423228660788810061701651952383274281893623333922818050902}{3946862768670578184254028172668716024354090618143337277717} a^{15} - \frac{41175210879559860999432777275518836509525562838133279711555}{86830980910752720053588619798711752535789993599153420109774} a^{13} + \frac{43381346940908492283310915555921277121848144170883086343405}{86830980910752720053588619798711752535789993599153420109774} a^{11} + \frac{2317420120134811813175330432743794629913203974242312531727}{14471830151792120008931436633118625422631665599858903351629} a^{9} + \frac{6857702404214416360196255419271038482495631349720312416216}{43415490455376360026794309899355876267894996799576710054887} a^{7} - \frac{999947476660172585647594928561284836330033869155877214239}{28943660303584240017862873266237250845263331199717806703258} a^{5} - \frac{116853921221599322999211172310189884584154742488420685524901}{260492942732258160160765859396135257607369980797460260329322} a^{3} + \frac{21445705595725106983688368504839018989133728905283026277174}{130246471366129080080382929698067628803684990398730130164661} a$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.11.118769262421915560193703211428553337469927424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | $22$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.9.10.1 | $x^{9} + 3 x^{2} + 3$ | $9$ | $1$ | $10$ | $C_3^2:Q_8$ | $[5/4, 5/4]_{4}^{2}$ | |
| 3.9.10.1 | $x^{9} + 3 x^{2} + 3$ | $9$ | $1$ | $10$ | $C_3^2:Q_8$ | $[5/4, 5/4]_{4}^{2}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 337 | Data not computed | ||||||
| 991 | Data not computed | ||||||
| 310501 | Data not computed | ||||||
| 2473607 | Data not computed | ||||||