Normalized defining polynomial
\( x^{22} - 44 x^{20} + 660 x^{18} - 1408 x^{17} - 7304 x^{16} + 46200 x^{15} + 166496 x^{14} - 350240 x^{13} - 2140512 x^{12} - 1464576 x^{11} + 7791168 x^{10} + 16937536 x^{9} + 2342208 x^{8} - 31841920 x^{7} - 40416640 x^{6} - 4983616 x^{5} + 31308288 x^{4} + 32414976 x^{3} + 14386944 x^{2} + 2818816 x + 144512 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30417957682782013455581770857372434743427072=2^{34}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{4} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{8} a^{10}$, $\frac{1}{8} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{16} a^{13}$, $\frac{1}{16} a^{14}$, $\frac{1}{16} a^{15}$, $\frac{1}{32} a^{16}$, $\frac{1}{32} a^{17}$, $\frac{1}{32} a^{18}$, $\frac{1}{64} a^{19}$, $\frac{1}{64} a^{20}$, $\frac{1}{26069135700645454793700752453837475904} a^{21} + \frac{90378539628074683465381193121553093}{26069135700645454793700752453837475904} a^{20} - \frac{119691873110744938248367239609527293}{26069135700645454793700752453837475904} a^{19} + \frac{2063587630892192367486920852879287}{6517283925161363698425188113459368976} a^{18} - \frac{47048814346011975257585964303670467}{13034567850322727396850376226918737952} a^{17} - \frac{1949189798544637912131326896035043}{407330245322585231151574257091210561} a^{16} - \frac{202815642780393128041595133472818077}{6517283925161363698425188113459368976} a^{15} + \frac{14444536355918264276998433730330203}{3258641962580681849212594056729684488} a^{14} + \frac{6302123690367983426658624801687633}{1629320981290340924606297028364842244} a^{13} + \frac{18845772308765960364423945210421071}{814660490645170462303148514182421122} a^{12} + \frac{840603467064090269304099842495197}{1629320981290340924606297028364842244} a^{11} - \frac{2896129001927804234718103876043121}{814660490645170462303148514182421122} a^{10} + \frac{24371195316578753144887853769810543}{407330245322585231151574257091210561} a^{9} - \frac{18074292223433579160376590108431163}{1629320981290340924606297028364842244} a^{8} + \frac{44248423434620578319329996512882634}{407330245322585231151574257091210561} a^{7} + \frac{91297237759158902355611307487698957}{814660490645170462303148514182421122} a^{6} - \frac{45121258918173863016144159293041459}{814660490645170462303148514182421122} a^{5} - \frac{54771707191240623999937485192952017}{407330245322585231151574257091210561} a^{4} + \frac{29678315821209090213739912943597271}{407330245322585231151574257091210561} a^{3} - \frac{141542294752520618197060094830700147}{407330245322585231151574257091210561} a^{2} - \frac{168057435408554370759165361489538328}{407330245322585231151574257091210561} a + \frac{65791097502611945883126366811553396}{407330245322585231151574257091210561}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 777847954329000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||