Normalized defining polynomial
\( x^{22} - x^{21} - 19 x^{20} + 14 x^{19} + 121 x^{18} - 78 x^{17} - 261 x^{16} + 287 x^{15} - 160 x^{14} - 852 x^{13} + 1239 x^{12} + 1601 x^{11} - 1405 x^{10} - 1576 x^{9} + 348 x^{8} + 692 x^{7} + 274 x^{6} - 60 x^{5} - 159 x^{4} - 32 x^{3} + 22 x^{2} + 4 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2769192260679449143892527783203125=5^{11}\cdot 29^{2}\cdot 131^{2}\cdot 5399^{2}\cdot 367163^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 131, 5399, 367163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{51825388642914980827} a^{21} + \frac{867887972110861404}{51825388642914980827} a^{20} + \frac{21463418767132064407}{51825388642914980827} a^{19} - \frac{13559855472580599573}{51825388642914980827} a^{18} - \frac{5852881316764319311}{51825388642914980827} a^{17} - \frac{13851327166233812905}{51825388642914980827} a^{16} - \frac{12216415214082962729}{51825388642914980827} a^{15} - \frac{2879371924013047285}{51825388642914980827} a^{14} + \frac{21096885824379205329}{51825388642914980827} a^{13} + \frac{19803705509707263878}{51825388642914980827} a^{12} - \frac{2085922241926368029}{51825388642914980827} a^{11} + \frac{18863222018202606277}{51825388642914980827} a^{10} + \frac{9331157190771542608}{51825388642914980827} a^{9} - \frac{3236224967010466153}{51825388642914980827} a^{8} + \frac{18512485678580629045}{51825388642914980827} a^{7} - \frac{1675356890253345094}{51825388642914980827} a^{6} + \frac{460555608540700784}{3048552273112645931} a^{5} + \frac{5139111887549847164}{51825388642914980827} a^{4} - \frac{7846236122960252210}{51825388642914980827} a^{3} + \frac{10204401265099665961}{51825388642914980827} a^{2} + \frac{11178506946467967830}{51825388642914980827} a - \frac{10693169541091960823}{51825388642914980827}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1570808982.29 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 79833600 |
| The 112 conjugacy class representatives for t22n47 are not computed |
| Character table for t22n47 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 11.9.7530807227563.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | $18{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | $22$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.5.0.1 | $x^{5} - x + 11$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 29.5.0.1 | $x^{5} - x + 11$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $131$ | 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 131.2.1.2 | $x^{2} + 393$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 131.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 131.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 131.5.0.1 | $x^{5} - x + 3$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 131.5.0.1 | $x^{5} - x + 3$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 5399 | Data not computed | ||||||
| 367163 | Data not computed | ||||||