Normalized defining polynomial
\( x^{22} - 22 x^{20} - 88 x^{18} + 3520 x^{16} - 4576 x^{14} - 99132 x^{12} + 468424 x^{10} - 870980 x^{8} + 806696 x^{6} - 380600 x^{4} + 81092 x^{2} - 4732 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2765268880252910314143797350670221340311552=2^{34}\cdot 7^{11}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{11} a^{8} + \frac{3}{11} a^{6} + \frac{2}{11} a^{4} + \frac{1}{11} a^{2} + \frac{5}{11}$, $\frac{1}{11} a^{9} + \frac{3}{11} a^{7} + \frac{2}{11} a^{5} + \frac{1}{11} a^{3} + \frac{5}{11} a$, $\frac{1}{11} a^{10} + \frac{4}{11} a^{6} - \frac{5}{11} a^{4} + \frac{2}{11} a^{2} - \frac{4}{11}$, $\frac{1}{22} a^{11} + \frac{2}{11} a^{7} + \frac{3}{11} a^{5} + \frac{1}{11} a^{3} - \frac{2}{11} a$, $\frac{1}{22} a^{12} - \frac{3}{11} a^{6} - \frac{3}{11} a^{4} - \frac{4}{11} a^{2} + \frac{1}{11}$, $\frac{1}{22} a^{13} - \frac{3}{11} a^{7} - \frac{3}{11} a^{5} - \frac{4}{11} a^{3} + \frac{1}{11} a$, $\frac{1}{22} a^{14} - \frac{5}{11} a^{6} + \frac{2}{11} a^{4} + \frac{4}{11} a^{2} + \frac{4}{11}$, $\frac{1}{22} a^{15} - \frac{5}{11} a^{7} + \frac{2}{11} a^{5} + \frac{4}{11} a^{3} + \frac{4}{11} a$, $\frac{1}{242} a^{16} - \frac{5}{242} a^{14} + \frac{1}{121} a^{12} - \frac{4}{121} a^{10} - \frac{1}{121} a^{8} + \frac{28}{121} a^{6} - \frac{6}{121} a^{4} - \frac{28}{121} a^{2} + \frac{7}{121}$, $\frac{1}{242} a^{17} - \frac{5}{242} a^{15} + \frac{1}{121} a^{13} + \frac{3}{242} a^{11} - \frac{1}{121} a^{9} + \frac{50}{121} a^{7} + \frac{27}{121} a^{5} - \frac{17}{121} a^{3} - \frac{15}{121} a$, $\frac{1}{484} a^{18} + \frac{5}{242} a^{14} + \frac{1}{242} a^{12} - \frac{5}{121} a^{10} + \frac{1}{242} a^{8} - \frac{1}{2} a^{7} + \frac{34}{121} a^{6} + \frac{15}{121} a^{4} + \frac{60}{121} a^{2} - \frac{54}{121}$, $\frac{1}{484} a^{19} + \frac{5}{242} a^{15} + \frac{1}{242} a^{13} + \frac{1}{242} a^{11} + \frac{1}{242} a^{9} - \frac{1}{22} a^{8} + \frac{56}{121} a^{7} + \frac{4}{11} a^{6} + \frac{48}{121} a^{5} - \frac{1}{11} a^{4} - \frac{50}{121} a^{3} + \frac{5}{11} a^{2} + \frac{45}{121} a + \frac{3}{11}$, $\frac{1}{328538685323596} a^{20} - \frac{140238378443}{164269342661798} a^{18} - \frac{4421530403}{164269342661798} a^{16} - \frac{222396234437}{14933576605618} a^{14} - \frac{590045914537}{164269342661798} a^{12} - \frac{67825105597}{14933576605618} a^{10} - \frac{1}{22} a^{9} - \frac{2319282689272}{82134671330899} a^{8} + \frac{4}{11} a^{7} - \frac{30310054082552}{82134671330899} a^{6} - \frac{1}{11} a^{5} - \frac{8645365430099}{82134671330899} a^{4} + \frac{5}{11} a^{3} + \frac{23139060251272}{82134671330899} a^{2} + \frac{3}{11} a + \frac{23014294648220}{82134671330899}$, $\frac{1}{4271002909206748} a^{21} + \frac{1217359494795}{2135501454603374} a^{19} - \frac{4077215150117}{2135501454603374} a^{17} + \frac{4546611671858}{1067750727301687} a^{15} + \frac{2983099416105}{164269342661798} a^{13} - \frac{40116414485469}{2135501454603374} a^{11} - \frac{1}{22} a^{10} + \frac{18044685409298}{1067750727301687} a^{9} - \frac{119232714779641}{1067750727301687} a^{7} - \frac{2}{11} a^{6} + \frac{511993418956674}{1067750727301687} a^{5} - \frac{3}{11} a^{4} + \frac{329956179603060}{1067750727301687} a^{3} - \frac{1}{11} a^{2} - \frac{361185903478134}{1067750727301687} a + \frac{2}{11}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 275497411266000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||