Normalized defining polynomial
\( x^{22} - 5 x^{21} - 19 x^{20} + 138 x^{19} - 234 x^{18} - 576 x^{17} + 8567 x^{16} - 17893 x^{15} - 75853 x^{14} + 255414 x^{13} + 209204 x^{12} - 1338618 x^{11} + 411447 x^{10} + 2870120 x^{9} - 2750667 x^{8} - 1555277 x^{7} + 2988765 x^{6} - 574462 x^{5} - 751638 x^{4} + 329506 x^{3} + 6664 x^{2} - 14874 x + 289 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2009284128530624004997349500428572968553=1297^{11}\cdot 115001\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297, 115001$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{5} a^{20} + \frac{2}{5} a^{19} + \frac{2}{5} a^{18} + \frac{1}{5} a^{17} + \frac{2}{5} a^{16} + \frac{1}{5} a^{14} - \frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{1}{5} a^{11} - \frac{1}{5} a^{9} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{203629898242429187133218775482661371338437960306738163139455} a^{21} + \frac{3106151149227419863785805590304159846219059102270652629812}{203629898242429187133218775482661371338437960306738163139455} a^{20} - \frac{63709901333917832133301896854465799296509891489870959998563}{203629898242429187133218775482661371338437960306738163139455} a^{19} + \frac{38267485798617439296110549898596978423765838315949203089526}{203629898242429187133218775482661371338437960306738163139455} a^{18} - \frac{50279453103018108108033853004902369741404090431553739230468}{203629898242429187133218775482661371338437960306738163139455} a^{17} - \frac{18233124063171693476425983664564875639522826309986144219813}{40725979648485837426643755096532274267687592061347632627891} a^{16} + \frac{9712483367512893652524495138894916167941199865263202971281}{203629898242429187133218775482661371338437960306738163139455} a^{15} - \frac{7824327626494971569305448752076386647103219556364667033691}{203629898242429187133218775482661371338437960306738163139455} a^{14} - \frac{48633439514016126174733157547430124748946797901636288615473}{203629898242429187133218775482661371338437960306738163139455} a^{13} + \frac{30934851225529461504028594863895276372308218843205627974351}{203629898242429187133218775482661371338437960306738163139455} a^{12} - \frac{14378825285849559727426425864525162092280899740909197642595}{40725979648485837426643755096532274267687592061347632627891} a^{11} - \frac{85345800204249149017920926877811990254001368715184976301906}{203629898242429187133218775482661371338437960306738163139455} a^{10} + \frac{1535477267808894332386274982693122461055964691925143748217}{40725979648485837426643755096532274267687592061347632627891} a^{9} - \frac{55129909714833646914982427104834866804631626302094790643647}{203629898242429187133218775482661371338437960306738163139455} a^{8} - \frac{21842448076520735149382738555341883155950937097222104485466}{203629898242429187133218775482661371338437960306738163139455} a^{7} + \frac{16850041582939937713654831412447222026015099517001486500817}{203629898242429187133218775482661371338437960306738163139455} a^{6} - \frac{8421739159536133362217258290116934007596920908889095502408}{203629898242429187133218775482661371338437960306738163139455} a^{5} - \frac{63750415574111103133839208052930153516960771875582475810609}{203629898242429187133218775482661371338437960306738163139455} a^{4} - \frac{61412488260808800606160827609056605098287017600900943973397}{203629898242429187133218775482661371338437960306738163139455} a^{3} - \frac{78119142573314755428715412172773765055004605748070663689346}{203629898242429187133218775482661371338437960306738163139455} a^{2} - \frac{512838210340386091665813408179673197758254188352774371238}{7021720629049282314938578464919357632359929665749591832395} a - \frac{7858386574740773786987166096460143815347741993007470918907}{40725979648485837426643755096532274267687592061347632627891}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1094818736770 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 45056 |
| The 200 conjugacy class representatives for t22n32 are not computed |
| Character table for t22n32 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | $22$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||
| 115001 | Data not computed | ||||||