Normalized defining polynomial
\( x^{22} - 88 x^{20} - 198 x^{19} + 2024 x^{18} + 6270 x^{17} - 19580 x^{16} - 78364 x^{15} + 78408 x^{14} + 496276 x^{13} + 7304 x^{12} - 1707542 x^{11} - 1055472 x^{10} + 3197810 x^{9} + 3138322 x^{8} - 3066712 x^{7} - 3678862 x^{6} + 1424742 x^{5} + 1891010 x^{4} - 280808 x^{3} - 376200 x^{2} + 13574 x + 18010 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17830448338954983961633748005017386674552832=2^{22}\cdot 7^{15}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{198639714762867099636919278792602796619815769750795052566892049} a^{21} + \frac{34651768575463872524161728639476037769652805946276266168123446}{198639714762867099636919278792602796619815769750795052566892049} a^{20} + \frac{23964842144521058292925707614105333677102679198507070399402188}{66213238254289033212306426264200932206605256583598350855630683} a^{19} - \frac{10271928472472924658497098487054869539737245109076744321001586}{66213238254289033212306426264200932206605256583598350855630683} a^{18} - \frac{54539293758907565391595672638353684682503938618315355615462290}{198639714762867099636919278792602796619815769750795052566892049} a^{17} + \frac{67528636547094399803149167587727004117204081807883519454908560}{198639714762867099636919278792602796619815769750795052566892049} a^{16} - \frac{1021628999986648255013579739474162612729811020444855137581624}{22071079418096344404102142088066977402201752194532783618543561} a^{15} + \frac{77729928279180986462470992921788597055912187969814776256813228}{198639714762867099636919278792602796619815769750795052566892049} a^{14} - \frac{46598844591662859817614477471251167827617776898183192304953555}{198639714762867099636919278792602796619815769750795052566892049} a^{13} + \frac{26179100040387750337903956952539021237350092926088576001860276}{66213238254289033212306426264200932206605256583598350855630683} a^{12} + \frac{39739295721414779155608247713068135885215114194764457922601918}{198639714762867099636919278792602796619815769750795052566892049} a^{11} - \frac{33431875420889425028108243122087381763277228395625035501159323}{198639714762867099636919278792602796619815769750795052566892049} a^{10} + \frac{90566506905019361240706602764886974311396491481359382635911993}{198639714762867099636919278792602796619815769750795052566892049} a^{9} - \frac{6690390164276839291810900025390707082748908668633726787860511}{198639714762867099636919278792602796619815769750795052566892049} a^{8} + \frac{32861466523979306090222268422251462409573708282126532949412705}{66213238254289033212306426264200932206605256583598350855630683} a^{7} + \frac{25462743782252360819836992454064571346058247146383826643314519}{198639714762867099636919278792602796619815769750795052566892049} a^{6} + \frac{14332511053521234518656937146817579491657718114091508606720646}{66213238254289033212306426264200932206605256583598350855630683} a^{5} - \frac{211268754346084784680150450856175503252081320100025786000467}{22071079418096344404102142088066977402201752194532783618543561} a^{4} + \frac{55392874353197094336733020262687636989493882814958569671087781}{198639714762867099636919278792602796619815769750795052566892049} a^{3} + \frac{56077255046786041520878447342399686279754960312941298623015047}{198639714762867099636919278792602796619815769750795052566892049} a^{2} - \frac{51831407820039139254407737925728576816487588884733287753727222}{198639714762867099636919278792602796619815769750795052566892049} a - \frac{72869488274466355202100624629943149426010088076035199018098499}{198639714762867099636919278792602796619815769750795052566892049}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1417836653750000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||