Normalized defining polynomial
\( x^{22} - 44 x^{20} + 814 x^{18} - 8426 x^{16} - 176 x^{15} + 54912 x^{14} + 4752 x^{13} - 239844 x^{12} - 52324 x^{11} + 715836 x^{10} + 302192 x^{9} - 1393920 x^{8} - 959640 x^{7} + 1505240 x^{6} + 1551528 x^{5} - 514272 x^{4} - 984368 x^{3} - 174856 x^{2} + 115280 x + 32136 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-98759602866175368362278476809650762153984=-\,2^{32}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{22} a^{11} - \frac{2}{11}$, $\frac{1}{22} a^{12} - \frac{2}{11} a$, $\frac{1}{22} a^{13} - \frac{2}{11} a^{2}$, $\frac{1}{22} a^{14} - \frac{2}{11} a^{3}$, $\frac{1}{44} a^{15} - \frac{1}{11} a^{4}$, $\frac{1}{44} a^{16} - \frac{1}{11} a^{5}$, $\frac{1}{44} a^{17} - \frac{1}{11} a^{6}$, $\frac{1}{44} a^{18} - \frac{1}{11} a^{7}$, $\frac{1}{44} a^{19} - \frac{1}{11} a^{8}$, $\frac{1}{44} a^{20} - \frac{1}{11} a^{9}$, $\frac{1}{7902202758538462761930356} a^{21} - \frac{38277787891700569585487}{3951101379269231380965178} a^{20} + \frac{15868991771966118501403}{7902202758538462761930356} a^{19} + \frac{41229934092838491248813}{3951101379269231380965178} a^{18} + \frac{16113207744470107502788}{1975550689634615690482589} a^{17} + \frac{3346735519239181091919}{718382068958042069266396} a^{16} + \frac{20937352672047139433097}{1975550689634615690482589} a^{15} + \frac{272667856770955353828}{1975550689634615690482589} a^{14} + \frac{39727106746225342625276}{1975550689634615690482589} a^{13} + \frac{15323830910038029727126}{1975550689634615690482589} a^{12} - \frac{30583569580018007315203}{1975550689634615690482589} a^{11} - \frac{894073403675023816269577}{3951101379269231380965178} a^{10} - \frac{301931731466978863313751}{3951101379269231380965178} a^{9} - \frac{557378623054186700508061}{3951101379269231380965178} a^{8} - \frac{521277628290883976318815}{1975550689634615690482589} a^{7} - \frac{284725356298426084331329}{1975550689634615690482589} a^{6} + \frac{6570994174354453290315}{179595517239510517316599} a^{5} - \frac{549106653332464332655815}{1975550689634615690482589} a^{4} - \frac{536467099814906658659917}{1975550689634615690482589} a^{3} - \frac{537087062547913163081879}{1975550689634615690482589} a^{2} - \frac{519395815331964225723104}{1975550689634615690482589} a - \frac{670261538404231381288809}{1975550689634615690482589}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35285362544300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||