Normalized defining polynomial
\( x^{22} - 8 x^{21} + 18 x^{20} + 40 x^{19} - 297 x^{18} + 513 x^{17} + 450 x^{16} - 3255 x^{15} + 4443 x^{14} + 2314 x^{13} - 13613 x^{12} + 11338 x^{11} + 9530 x^{10} - 21040 x^{9} + 5227 x^{8} + 11912 x^{7} - 8172 x^{6} - 1577 x^{5} + 2749 x^{4} - 372 x^{3} - 267 x^{2} + 66 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-87192729322616328324934343477207=-\,23^{21}\cdot 47^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{375643737801459618923} a^{21} + \frac{95764531244339678091}{375643737801459618923} a^{20} + \frac{134804221956919192380}{375643737801459618923} a^{19} + \frac{22951288782361839397}{375643737801459618923} a^{18} - \frac{156705797405584962348}{375643737801459618923} a^{17} - \frac{125010396713980309811}{375643737801459618923} a^{16} - \frac{59831270061577267752}{375643737801459618923} a^{15} + \frac{175622233066067988644}{375643737801459618923} a^{14} + \frac{120962805641933359520}{375643737801459618923} a^{13} + \frac{133444278569583871619}{375643737801459618923} a^{12} + \frac{92566126925132138023}{375643737801459618923} a^{11} + \frac{45947449127058966474}{375643737801459618923} a^{10} - \frac{108324147956598303550}{375643737801459618923} a^{9} - \frac{96111441638309554266}{375643737801459618923} a^{8} + \frac{62865881947971437877}{375643737801459618923} a^{7} - \frac{116195096846455042230}{375643737801459618923} a^{6} - \frac{130850518952208080151}{375643737801459618923} a^{5} - \frac{50197467837550042287}{375643737801459618923} a^{4} + \frac{135929908796452180236}{375643737801459618923} a^{3} - \frac{61644995993961680314}{375643737801459618923} a^{2} + \frac{169577059678403644458}{375643737801459618923} a + \frac{94567398576867623566}{375643737801459618923}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 177605096.839 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||