Normalized defining polynomial
\( x^{22} - 55 x^{20} - 22 x^{19} + 957 x^{18} + 198 x^{17} - 7293 x^{16} + 1914 x^{15} + 24794 x^{14} - 25828 x^{13} - 28380 x^{12} + 85584 x^{11} - 13596 x^{10} - 105028 x^{9} + 73260 x^{8} + 53592 x^{7} - 84535 x^{6} - 11374 x^{5} + 43571 x^{4} + 264 x^{3} - 10241 x^{2} + 572 x + 1115 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-67897226970495565749066452806634898980864=-\,2^{28}\cdot 7^{10}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{1955030519405410893783826489853949101618365092869} a^{21} + \frac{711910954511849935112293654199704545525872387300}{1955030519405410893783826489853949101618365092869} a^{20} - \frac{49740666246143129888748784171719595567115272509}{1955030519405410893783826489853949101618365092869} a^{19} - \frac{859608042382634323272552181510952829250558400184}{1955030519405410893783826489853949101618365092869} a^{18} + \frac{670537410368323026053443532715768038872549820308}{1955030519405410893783826489853949101618365092869} a^{17} - \frac{90353390413169570301415647832804641170335299657}{1955030519405410893783826489853949101618365092869} a^{16} - \frac{197210451690033563635046357752651406107655344855}{1955030519405410893783826489853949101618365092869} a^{15} + \frac{577693332262007436090846294871600261032893672649}{1955030519405410893783826489853949101618365092869} a^{14} - \frac{906677017032686964273972727187929586757177524825}{1955030519405410893783826489853949101618365092869} a^{13} - \frac{815216419732311180841041884662865434382646871342}{1955030519405410893783826489853949101618365092869} a^{12} - \frac{95971004228938133854150205350334897058882117603}{1955030519405410893783826489853949101618365092869} a^{11} - \frac{57779192401691998479149731655119768272151614698}{1955030519405410893783826489853949101618365092869} a^{10} + \frac{794258944208370062257417372586668805127357436221}{1955030519405410893783826489853949101618365092869} a^{9} - \frac{612457033401972628659043454507678144552843776101}{1955030519405410893783826489853949101618365092869} a^{8} + \frac{665056460938829310270038835364717394856579318090}{1955030519405410893783826489853949101618365092869} a^{7} + \frac{377630645264060208467376493796194598775466182694}{1955030519405410893783826489853949101618365092869} a^{6} + \frac{487769829315021880536119555662669974678954437964}{1955030519405410893783826489853949101618365092869} a^{5} + \frac{315074521044466101934646590183688618850330654787}{1955030519405410893783826489853949101618365092869} a^{4} + \frac{487880477191963058720914124888290258801220346116}{1955030519405410893783826489853949101618365092869} a^{3} + \frac{544696956341964286222273016710992814978186655639}{1955030519405410893783826489853949101618365092869} a^{2} + \frac{895012213520743479655756824827512150240067200188}{1955030519405410893783826489853949101618365092869} a - \frac{640505396532188586157363399616165748199378246886}{1955030519405410893783826489853949101618365092869}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29456905708500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||