Normalized defining polynomial
\( x^{22} - 33 x^{20} - 66 x^{19} + 231 x^{18} + 1144 x^{17} + 1529 x^{16} - 4928 x^{15} - 22154 x^{14} - 1936 x^{13} + 88242 x^{12} - 17636 x^{11} - 365706 x^{10} + 218944 x^{9} + 1743610 x^{8} + 775632 x^{7} - 2869999 x^{6} - 3158496 x^{5} + 575311 x^{4} + 2206182 x^{3} + 942403 x^{2} + 77528 x + 1789 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-43207326253951723658496833604222208442368=-\,2^{28}\cdot 7^{11}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{3}$, $\frac{1}{1052} a^{20} + \frac{7}{1052} a^{19} - \frac{5}{1052} a^{18} + \frac{15}{1052} a^{17} - \frac{85}{1052} a^{16} - \frac{29}{1052} a^{15} - \frac{45}{1052} a^{14} - \frac{163}{1052} a^{13} + \frac{5}{1052} a^{12} + \frac{207}{1052} a^{11} - \frac{97}{1052} a^{10} + \frac{219}{1052} a^{9} + \frac{15}{1052} a^{8} + \frac{105}{1052} a^{7} + \frac{77}{1052} a^{6} + \frac{483}{1052} a^{5} + \frac{153}{526} a^{4} + \frac{143}{526} a^{3} - \frac{43}{526} a^{2} - \frac{79}{526} a - \frac{139}{526}$, $\frac{1}{24759790938888694953084766401851355301164} a^{21} + \frac{1275975823068203300609662012199927657}{12379895469444347476542383200925677650582} a^{20} - \frac{1357565331012092108355908583441779611679}{24759790938888694953084766401851355301164} a^{19} + \frac{1117928286989255181466761700770069119585}{12379895469444347476542383200925677650582} a^{18} - \frac{335519925628393704002233529488211811128}{6189947734722173738271191600462838825291} a^{17} - \frac{2182173866989202280953628276627132836197}{24759790938888694953084766401851355301164} a^{16} - \frac{1291477909388505958790767570156919743423}{12379895469444347476542383200925677650582} a^{15} + \frac{1944743148763872484706675462768322396175}{12379895469444347476542383200925677650582} a^{14} + \frac{238752227469828544565123287613472187019}{2063315911574057912757063866820946275097} a^{13} - \frac{1206202001010063472656898077488159899697}{12379895469444347476542383200925677650582} a^{12} - \frac{2777977145983296652057380151119657293993}{12379895469444347476542383200925677650582} a^{11} + \frac{183275201219109954026642407061292675051}{4126631823148115825514127733641892550194} a^{10} - \frac{669538947094352506742600766926829159347}{4126631823148115825514127733641892550194} a^{9} - \frac{2936972526604773918536664027880536892471}{12379895469444347476542383200925677650582} a^{8} + \frac{5240144434634209296372668303041125975787}{12379895469444347476542383200925677650582} a^{7} + \frac{5810393666497078774188238825878789504595}{12379895469444347476542383200925677650582} a^{6} - \frac{3134703557983432045117481118820285174241}{24759790938888694953084766401851355301164} a^{5} + \frac{980591327013229621623265836793506657352}{6189947734722173738271191600462838825291} a^{4} + \frac{12136269921828037621378966377732366038633}{24759790938888694953084766401851355301164} a^{3} - \frac{2877836181242244059611422428824621036042}{6189947734722173738271191600462838825291} a^{2} + \frac{688762804571608522963684098117891802321}{4126631823148115825514127733641892550194} a + \frac{5982124369590250556192353234938174909887}{24759790938888694953084766401851355301164}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31449293670700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |