Normalized defining polynomial
\( x^{22} - 180 x^{20} + 9179 x^{18} + 58284 x^{16} - 16217640 x^{14} + 321816792 x^{12} + 2957044992 x^{10} - 135890353824 x^{8} + 871502095749 x^{6} + 4468447202724 x^{4} - 44093388187521 x^{2} + 46916659556700 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-27758443257594324914983363876184067664865764900320098627846512840261521316613154967560690069271834754285568=-\,2^{70}\cdot 3^{21}\cdot 67\cdot 337^{8}\cdot 2851\cdot 310501^{8}\cdot 818717\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68{,}918.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 67, 337, 2851, 310501, 818717$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{3}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{2950442336895763005424408194123522436283571976756718491445}{57887320607168480035725746532474501690526662399435613406516} a^{18} - \frac{5126873816047206110036305421918131955879852550364619559202}{14471830151792120008931436633118625422631665599858903351629} a^{16} + \frac{506741901178154632153423458283651167424811358765017136330}{14471830151792120008931436633118625422631665599858903351629} a^{14} - \frac{145040689786150828367516235588371351693221295079537311841}{14471830151792120008931436633118625422631665599858903351629} a^{12} - \frac{4787953406577966332088879542160203575293637223043944268149}{14471830151792120008931436633118625422631665599858903351629} a^{10} - \frac{7131752603066048449001924920926642599891215098792184156038}{14471830151792120008931436633118625422631665599858903351629} a^{8} + \frac{636321335543028714604923376153280555080229802599412965950}{1315620922890192728084676057556238674784696872714445759239} a^{6} + \frac{28218717654460129733782636551063535763487933288648649657013}{57887320607168480035725746532474501690526662399435613406516} a^{4} - \frac{24926796245418423596073142729721447569001241096227095454325}{57887320607168480035725746532474501690526662399435613406516} a^{2} + \frac{4722177501952087235395429331766508040500370402455503237510}{14471830151792120008931436633118625422631665599858903351629}$, $\frac{1}{289436603035842400178628732662372508452633311997178067032580} a^{21} - \frac{590088467379152601084881638824704487256714395351343698289}{57887320607168480035725746532474501690526662399435613406516} a^{19} - \frac{24725577783886532229004047476954889334391370700588142470033}{144718301517921200089314366331186254226316655998589033516290} a^{17} - \frac{13965088250613965376778013174834974255206854241093886215299}{72359150758960600044657183165593127113158327999294516758145} a^{15} - \frac{2923374168315654167459790573741399354864977378987688132694}{14471830151792120008931436633118625422631665599858903351629} a^{13} - \frac{33731613710162206349951752808397454420556968422761750971407}{72359150758960600044657183165593127113158327999294516758145} a^{11} - \frac{21603582754858168457933361554045268022522880698651087507667}{72359150758960600044657183165593127113158327999294516758145} a^{9} + \frac{1951942258433221442689599433709519229864926675313858725189}{6578104614450963640423380287781193373923484363572228796195} a^{7} + \frac{86106038261628609769508383083538037454014595688084263063529}{289436603035842400178628732662372508452633311997178067032580} a^{5} - \frac{82814116852586903631798889262195949259527903495662708860841}{289436603035842400178628732662372508452633311997178067032580} a^{3} + \frac{52859845459280534497585168562888892348895737604487716529907}{144718301517921200089314366331186254226316655998589033516290} a$
Class group and class number
Not computed
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.11.118769262421915560193703211428553337469927424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | $22$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 67 | Data not computed | ||||||
| 337 | Data not computed | ||||||
| 2851 | Data not computed | ||||||
| 310501 | Data not computed | ||||||
| 818717 | Data not computed | ||||||